
IBM Parallel Environment for AIX

PE Benchmarker User’s Guide
Version 3 Release 1

IBM Confidential, Limited Rights Data

IBM

IBM Parallel Environment for AIX

PE Benchmarker User’s Guide
Version 3 Release 1

IBM Confidential, Limited Rights Data

IBM

Note!
Before using this information and the product it supports, be sure to read the general information under “Notices” on
page 161.

LIMITED RIGHT NOTICE
(a) These data are submitted with limited rights under Subcontract No. B331593 (and lower-tier subcontract, if appropriate).
These data may not be reproduced and used by the University and the Government with the express limitation that they will
not, without written permission of the Subcontractor, be used for purposes of manufacture nor disclosed outside the
University or the Government; except that the University or the Government may disclose these data outside the University
or the Government for the following purposes, if any; provided that the University and the Government makes such
disclosure subject to prohibition against further use and disclosure*:

(b) This Notice shall be marked on any reproduction of these data in whole or in part.

(End of Notice)

*The purposes shall be identified in the subcontract schedule when this clause is used. (1)

(1) There are none to date.

Beta Documentation (October 2000)

This manual is Beta Documentation only.

Copyright International Business Machines Corporation 2000. All rights reserved. Note to U.S. Government Users —
Documentation related to restricted rights — Use, duplication or disclosure is subject to restrictions set forth in GSA
ADP Schedule Contract with IBM Corp.

© Copyright International Business Machines Corporation 2000. All rights reserved.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

IBM Confidential, Limited Rights Data

Contents

About This Book . vii
Who Should Use This Book . vii
How This Book is Organized . vii

Overview of Contents . vii

Chapter 1. What is the PE Benchmarker? 1

Chapter 2. Using the Performance Collection Tool 5
Using the Performance Collection Tool’s Graphical User Interface. 5

Performance Collection Tool (Graphical User Interface) Overview 5
Starting the Performance Collection Tool 8
Loading and Starting a New Application 10
Connecting to a Running Application 13
Connecting to One or More Processes of the Loaded Application 15
Selecting (At Tool Start-up Time) the Type of Probe Data To Be Collected 16
Selecting (After Tool Startup Time) the Type of Probe Data To Be Collected 18
Starting and Stopping Application Execution 20
Disconnecting From One or More Processes of the Loaded Application . . . 20
Viewing Application Source Code 20
Setting User Preferences . 21
Searching for Functions in the Application Source Code 22
Examining Output From, and Sending Input To, the Application 23
Specifying MPI Trace Data to Be Collected 24
Adding User Markers to Processes 33
Specifying Profile Data To Be Collected 36
Removing Performance Collection Probes From One or More Processes 39
Removing User Markers From Processes 40
Terminating Connected Processes 42
Exiting the Performance Collection Tool 42

Using the Performance Collection Tool’s Command-Line Interface 43
Performance Collection Tool (Command-Line Interface) Overview 43
Starting the Performance Collection Tool In Command-Line Mode 46
Grouping Tasks of a POE Application. 47
Loading and Starting a New Application 48
Connecting to a Running Application 49
Suspending and Resuming Application Execution 50
Sending Standard Input Text to the Application 51
Displaying the Contents of a Source File 52
Selecting Type of Probe Data To Be Collected 53
Collecting MPI Trace and Custom User Marker Information 54
Collecting Hardware and Operating System Profile Information 59
Terminating Connected Processes 61
Disconnecting From the Application 62
Exiting the Performance Collection Tool 63

Chapter 3. Using the Profile Visualization Tool 65
Using the Profile Visualization Tool’s Graphical User Interface 65

Profile Visualization Tool (Graphical User Interface) Overview. 65
Starting the Profile Visualization Tool 67
Loading Files for Processing 69
Viewing Profile Data . 70
Viewing Selected Objects . 76
Finding Data . 80

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 iii

Generating Reports of Profile Data 81
Saving Summary Data . 84
Exporting Profile Data . 86
Specifying User Preferences 87
Exiting the Profile Visualization Tool 88

Using the Profile Visualization Tool’s Command Line Interface 88
Profile Visualization Tool (Command Line Interface) Overview 88
Starting the Profile Visualization Tool in Command-Line Mode 89
Loading Files . 89
Creating a Summary File . 89
Generating Reports . 89
Exporting Files . 90
Exiting the Profile Visualization Tool 90

Chapter 4. Creating, Converting, and Viewing Information Contained In,
UTE Interval Files . 91

Converting AIX Trace Files Into UTE Interval Trace Files 92
Generating Statistics Tables From UTE Interval Trace Files 93
Converting UTE Interval Files Into SLOG Files Required By Argonne National

Laboratory’s Jumpshot Tool 94

Appendix A. Dynamic Probe Class Library (DPCL) Enhancements 97
New Functions of Class SourceObj 97

bget_function_list . 98
get_function_list . 99

Class FunctionId . 100
Constructors . 101
get_demangled_name . 102
get_demangled_name_length 103
get_mangled_name. 104
get_mangled_name_length 105
get_module_name . 106
get_module_name_length 107
operator= . 108
operator== . 109

Class FunctionList . 110
Constructors . 111
get_count . 112
get_entry. 113
operator= . 114

Appendix B. PE Benchmarker Command Reference 115
convert . 116
pct . 118
Subcommands of the pct Command 120

connect Subcommand (of the pct Command) 120
destroy Subcommand (of the pct Command) 120
disconnect Subcommand (of the pct Command) 121
exit Subcommand (of the pct Command) 122
file Subcommand (of the pct Command) 122
find Subcommand (of the pct Command) 123
function Subcommand (of the pct Command) 124
group Subcommand (of the pct Command) 125
list Subcommand (of the pct Command) 126
load Subcommand (of the pct Command) 127
point Subcommand (of the pct Command) 128

IBM Confidential, Limited Rights Data

iv IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

profile add Subcommand (of the pct Command) 130
profile remove Subcommand (of the pct Command) 131
profile set path Subcommand (of the pct Command) 132
profile show Subcommand (of the pct Command). 132
resume Subcommand (of the pct Command) 133
select Subcommand (of the pct Command) 134
set Subcommand . 134
show Subcommand (of the pct Command) 135
start Subcommand (of the pct Command) 137
stdin Subcommand (of the pct Command) 137
suspend Subcommand (of the pct Command) 137
trace add Subcommand (of the pct Command). 138
trace remove Subcommand (of the pct Command) 140
trace set Subcommand (of the pct Command) 140
trace show Subcommand (of the pct Command) 141
wait Subcommand (of the pct Command). 142

pvt . 144
Subcommands of the pvt Command 146

exit Subcommand (of the pvt Command) 146
export Subcommand (of the pvt Command) 146
load Subcommand (of the pvt Command) 146
report Subcommand (of the pvt Command) 146
sum Subcommand (of the pvt Command) 147

slogmerge . 148
utemerge . 150
utestats . 152

Appendix C. PE Benchmarker Messages 155

Notices . 161
Trademarks. 162
Acknowledgements . 163

Glossary of Terms and Abbreviations 165

Bibliography . 173
Information Formats . 173
Finding Documentation on the World Wide Web 173
Accessing PE Documentation Online 173
RS/6000 SP Publications. 174

SP Hardware and Planning Publications 174
SP Software Publications 174

AIX and Related Product Publications 175
DCE Publications . 175
Red Books . 175
Non-IBM Publications . 175

Index . 177

IBM Confidential, Limited Rights Data

Contents v

IBM Confidential, Limited Rights Data

vi IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

About This Book

This book is an informal Beta document that describes the PE Benchmarker tool set
still under development. It describes the various tools for collecting and analyzing
program event trace or hardware performance data. Specifically, it describes:

v the Performance Collection Tool for collecting event trace or hardware
performance information from an executing serial or POE program.

v the Profile Visualization Tool for displaying graphs and charts of the performance
information gathered by the Performance Collection Tool.

v Several Unified Trace Environment (UTE) utilities for converting and displaying
the event trace information gathered by the Performance Collection Tool.

Who Should Use This Book
This book is intended for application developers working in an AIX environment who
wish to analyze their serial or POE programs using the PE Benchmarker. You
should, therefore, understand programming concepts and the AIX operating system
before reading this book. Furthermore, if you plan to analyze POE programs, you
should understand parallel programming concepts and know how to run programs
in the Parallel Operating Environment. Where necessary, this book provides some
background information related to these issues. More commonly, this book refers
you to the appropriate documentation.

How This Book is Organized
This book is organized into four chapters plus appendices. The chapters provide an
overview of the PE Benchmarker tool set — the Performance Collection Tool, the
Profile Visualization Tool, and the UTE utilities — and then describes, in detail, each
of the tools in turn. The appendices provide AIX man-page style reference
information for the PE Benchmarker commands and some new Dynamic Probe
Class Library (DPCL) classes and functions that have been added for this Beta
release.

Overview of Contents
This book contains the following information:

v “Chapter 1. What is the PE Benchmarker?” on page 1 describes the tools at a
high level and illustrates how they are used together to analyze serial or POE
programs.

v “Chapter 2. Using the Performance Collection Tool” on page 5 describes how to
collect MPI and user event traces or hardware and operating system profiles for
a particular serial or POE program’s run. It describes how you can use the
Performance Collection Tool’s graphical user interface or command line interface
to:

– connect to a running application, or, if the application you want to examine is
not already running, load and connect to it.

– select the type of data to collect (either MPI and user event traces or
hardware and operating system profiles).

– start and stop execution of the target application.

– install performance collection probes into the target application to collect the
MPI, user event traces, or hardware profile information.

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 vii

– remove the performance collection probes from the target application when
you are through collecting the performance data.

– Disconnect from, or terminate, the target application processes.

v “Chapter 3. Using the Profile Visualization Tool” on page 65 describes how to
view and generate reports for the hardware and operating system profiles
collected by the Performance Collection Tool. It describes how you can use the
Profile Visualization Tool’s graphical user interface or command line interface to:

– load one or more profile data files for processing.

– view bar charts of the collected profile data.

– generate reports of the collected profile data.

v “Chapter 4. Creating, Converting, and Viewing Information Contained In, UTE
Interval Files” on page 91 describes several utilities designed to enable you to
view the MPI and user event traces collected by the Performance Collection Tool.
The trace data collected by the Performance Collection Tool is stored as AIX
trace files. This chapter describes how, in order to view the data, you can:

– convert the AIX trace files into UTE files (using the convert utility), and
generate statistics tables of the information in the UTE files (using the
utestats utility). If desired, you can first merge multiple UTE files into a single
UTE file (using the utemerge utility) before using the utestats utility.

– convert the AIX trace files into UTE files (using the convert utility), and merge
the UTE files into a single SLOG file (using the slogmerge utility). The SLOG
file can then be analyzed by Jumpshot — a public domain tool developed at
Argonne National Laboratory.

v “Appendix A. Dynamic Probe Class Library (DPCL) Enhancements” on page 97
describes the classes and functions we have added to DPCL in order to
implement the Performance Collection Tool. This information is designed to
supplement the IBM Parallel Environment for AIX: DPCL Class Reference and
the IBM Parallel Environment for AIX: DPCL Programming Guide, and enables
you to incorporate the new classes and functions into the DPCL analysis tools
you create.

v “Appendix B. PE Benchmarker Command Reference” on page 115 contains the
manual pages for the PE Benchmarker commands discussed throughout this
book.

v “Appendix C. PE Benchmarker Messages” on page 155 contains an explanation
of PE Benchmarker messages you may encounter.

IBM Confidential, Limited Rights Data

viii IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Chapter 1. What is the PE Benchmarker?

The PE Benchmarker is a suite of applications and utilities that you can use to
analyze the performance of programs run within the IBM AIX Parallel Environment.
The PE Benchmarker suite consists of:

v the Performance Collection Tool . This tool enables you to collect either MPI
and user event data or hardware and operating system profiles for one or more
application processes (or ″tasks″). This tool is built on our dynamic
instrumentation technology, the Dynamic Probe Class Library (DPCL). Unlike
more traditional tools for collecting message-passing and other performance
information, the Performance Collection Tool, because it is built on DPCL,
enables you to insert and remove instrumentation probes into the target
application while the target application is running. More traditional tools require
the application to be instrumented through compilation or linking. This often
results in more instrumentation being inserted into the application than is actually
needed, and so such tools are more likely to create situations in which the
instrumented version of the application is no longer representative of the actual,
uninstrumented, version of the application. Since the Performance Collection Tool
enables you to make the decision of what data is collected at run time, this
typically results in a more acceptable intrusion cost of the instrumentation. What’s
more, the files output by the Performance Collection Tool are output on each
machine running instrumented processes rather than on a single, centralized,
machine. This means that your analysis can be efficiently scaled to collect
information on a large number of processes running on a large number of nodes.

v a set of Unified Trace Environment (UTE) utilities . When you collect MPI and
user event traces using the Performance Collection Tool, the collected
information is saved, on each machine running instrumented processes, as an
standard AIX event trace file. The UTE utilities enable you to convert one or
more of these AIX trace files into UTE interval files. While an AIX event trace file
has a time stamp indicating the point in time when an event occurred, UTE
interval files take this information to also determine how long an event lasts
before encountering the next event. Because they include this duration
information, UTE interval files are easier to visualize than traditional AIX event
trace files. The UTE utilities are:

– The convert utility which converts AIX event trace records into UTE interval
trace files.

– The utemerge utility which merges multiple UTE interval files into a single
UTE interval file.

– The utestats utility which generates statistics tables from UTE interval files.

– The slogmerge utility which converts and merges UTE interval files into a
single SLOG file for analysis within Argonne National Laboratory’s Jumpshot
tool.

v the Profile Visualization Tool . When you collect hardware and operating system
profiles using the Performance Collection Tool, the collected profile information is
saved, on each machine running instrumented processes, as NetCDF (network
Common Data Form) files. The Profile Visualization Tool can read NetCDF files
and summarize the profile information in reports.

The following figure illustrates how the various tools in the PE Benchmarker toolset
work together to enable you to analyze the performance of programs run within the
IBM AIX Parallel Environment. Please note that Jumpshot is not part of the PE
Benchmarker toolset, but is instead a public domain tool developed at Argonne

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 1

National Laboratory. It is shown in the figure below, because the PE Benchmarker
provides the slogmerge utility for converting UTE files into the SLOG format
required by Jumpshot.

The preceding figure illustrates the procedure for collecting and analyzing data
using the PE Benchmarker toolset. This procedure starts with the Performance
Collection Tool. When using the Performance Collection Tool, you must select the
type of data you are collecting — either MPI and user event trace data or hardware
and operating system performance data. You use the Performance Collection Tool
to connect to existing processes, or start processes running (which also connects to
the processes). By ″connect to processes″ we mean the Performance Collection
Tool establishes a communication connection that enables it to control the process’

AIX Trace

Files

UTE Interval

Files

convert

convert

convert

convert

convert

convert

UTE Interval

Files

utestats

utestats

utestats
utemerge

Merged

UTE

File

UTE Interval

Files

slogmerge

slogmerge

slogmerge
Merged

SLOG

File

SLOG

Files

Trace Data Collection

Hardware Performance Data Collection

netCDF

Files

PE Benchmarker

Statistics Tables Generated

By utestats Utility

Jumpshot

Profile Visualization Tool

Performance Collection Tool (Note: Jumpshot is a public domain tool

developed by Argonne National Laboratory,

and is NOT part of the PE Benchmarker Toolset)

Figure 1. Overview of the PE Benchmarker Toolset

IBM Confidential, Limited Rights Data

2 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

execution (suspend, resume, and terminate the process), and also instrument the
process with data collection probes. Data files containing the collected information
will be generated on each machine running at least one instrumented process. The
format of the files generated depends on the type of data you are collecting.

v If you are collecting MPI and user event trace data, standard AIX trace files will
be generated. You will first need to take the AIX trace files output by the
Performance Collection Tool and convert them, using the convert utility, into UTE
interval files. If you want to view statistical tables of the information contained in
the UTE interval files, you can use the utestats utility. You can optionally merge
multiple UTE files into a single UTE file using the utemerge utility before using
the utestats utility to generate the statistical tables. If you instead want to view
the information contained in the UTE interval files graphically, you can convert
them into SLOG files which are readable by Argonne National Laboratory’s
Jumpshot tool. To convert UTE interval files into SLOG files, you use the
slogmerge utility. The slogmerge utility can convert a single UTE interval file
into a single SLOG file, or it can convert multiple UTE interval files into a single,
merged, SLOG file.

v If you are collecting hardware performance data, NetCDF files will be generated.
You can use the Profile Visualization Tool to generate graphs and reports of the
information contained in the NetCDF files.

IBM Confidential, Limited Rights Data

Chapter 1. What is the PE Benchmarker? 3

IBM Confidential, Limited Rights Data

4 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Chapter 2. Using the Performance Collection Tool

This chapter describes how to collect MPI and user event traces or hardware and
operating system profiles for a particular serial or POE program’s run. It describes
how you can use the Performance Collection Tool’s graphical user interface or
command-line interface to:

v connect to a running application, or (if the application you want to examine is not
already running) load an application and connect to it.

v select the type of data to collect (either MPI and user event traces, or hardware
and operating system profiles).

v start and stop execution of the target application.

v install performance collection probes into the target application to collect the MPI,
user event trace, or hardware profile information.

v remove the performance collection probes from the target application when you
are through collecting the performance data.

v Disconnect from, or terminate, the target application processes.

For information on the tool’s graphical user interface, refer to “Using the
Performance Collection Tool’s Graphical User Interface”. For information on the
tool’s command-line interface, refer to “Using the Performance Collection Tool’s
Command-Line Interface” on page 43.

Using the Performance Collection Tool’s Graphical User Interface
This section describes how you can use the Performance Collection Tool’s graphical
user interface to collect either MPI and user event traces, or hardware and
operating system profiles. This section begins with a brief overview of the tasks you
can perform using the Performance Collection Tool’s graphical user interface, and
then describes each of these tasks in more detail. You can also operate the
Performance Collection Tool using its command-line interface. For information on
the tool’s command-line interface, refer to “Using the Performance Collection Tool’s
Command-Line Interface” on page 43.

Performance Collection Tool (Graphical User Interface) Overview
Performance Collection Tool Main Window

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 5

Here’s an overview of the steps you’ll follow when using the Performance Collection
Tool’s graphical user interface to collect either MPI and user event traces, or
hardware and operating system profiles. More detailed instructions on each of the
tasks summarized are provided later in this chapter. To use the Performance
Collection Tool, you:

1. Start the Performance Collection Tool by using the pct command. For more
information, refer to “Starting the Performance Collection Tool” on page 8.

2. Either load and start a new application, or connect to a running application.

v To load and start a new application, use the Load Application Dialog to load
either a serial or POE application. Using the Load Application Dialog, you can
select whether you would like to merely load the application, or load the
application and start its execution. If you choose to merely load the
application, its execution will be suspended at its first executable instruction.
This enables you to install performance collection probes before later starting
application execution. For more information, refer to “Loading and Starting a
New Application” on page 10.

v To connect to a running application, use the Connect Application Dialog.
Using the Connect Application Dialog, you can connect to a serial or POE
application. If connecting to a POE application, you can select whether you
would like to connect to all processes in the POE application, or just the
controlling, ″home node″, POE process. Connecting to only the controlling
POE process will enable you to later connect to select tasks in the POE
application, and may be desirable for performance reasons. For more
information, refer to “Connecting to a Running Application” on page 13.

3. Select the type of data you will be collecting using the Performance Collection
Tool. You can collect either:

v MPI and user event traces for analysis using the utestats utility or a
graphical visualization tool like Jumpshot.

IBM Confidential, Limited Rights Data

6 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

v hardware and operating system profiles for analysis within the Profile
Visualization Tool.

For more information, refer to “Selecting (At Tool Start-up Time) the Type of
Probe Data To Be Collected” on page 16, and “Selecting (After Tool Startup
Time) the Type of Probe Data To Be Collected” on page 18.

4.

If: Then:

You are collecting MPI and
user event traces.

Use the Probe Selection Panel of the Performance Collection
Tool’s Main Window to specify which MPI events you want to
collect data for. For example, you can select ″All MPI events″,
″Collective communication″, ″Point-to-point communication″,
and so on. In addition to specifying MPI trace data to be
collected, you can also add user markers to processes to mark
events or states of interest. Marking these states or events of
interest gives you a frame of reference when analyzing the
trace record in a graphical visualization tool like Jumpshot. You
can also use user markers to mark locations where tracing
should be stopped or started. Since you can add MPI probes
only at a program, file, or function level (meaning that the
entire program, file, or function will be traced), this gives you
more control over which part of your program is traced.

For more information on adding MPI trace probes or user
markers to one or more connected processes, refer to
“Specifying MPI Trace Data to Be Collected” on page 24 and
“Adding User Markers to Processes” on page 33. For
information on removing these probes when you are through
collecting the necessary information, refer to “Removing
Performance Collection Probes From One or More Processes”
on page 39 and “Removing User Markers From Processes” on
page 40.

You are collecting
hardware and operating
system profile information.

Use the Probe Selection Panel of the Performance Collection
Tool’s Main Window to specify the hardware and operating
system information you want to collect for later analysis within
the Profile Visualization Tool. For more information, refer to
“Specifying Profile Data To Be Collected” on page 36. For
information on removing the probes when you are through
collecting the necessary information, refer to “Removing
Performance Collection Probes From One or More Processes”
on page 39.

5. When you are done collecting data, you can terminate connected processes,
disconnect from the processes, and/or exit the Performance Collection Tool. For
more information, refer to “Terminating Connected Processes” on page 42,
“Disconnecting From One or More Processes of the Loaded Application” on
page 20, and “Exiting the Performance Collection Tool” on page 42.

In addition to the tasks summarized above, you can also:

v display the contents of source files in the View Source window. For more
information, refer to “Viewing Application Source Code” on page 20.

v set user preferences. In particular, you can determine whether the scripting
commands produced as a result of your manipulating the Performance Collection
Tool’s graphical user interface are displayed in the Main Window’s Information
Area and/or saved to a file. Since your actions on the graphical user interface are
translated into the same scripting commands you would issue to the Performance
Collection Tool’s command-line interface, this enables you to:

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 7

– more quickly learn the scripting commands and

– create reusable scripts for the command-line interface.

For more information, refer to “Setting User Preferences” on page 21. For general
information on the Performance Collection Tool’s command-line interface, refer to
“Using the Performance Collection Tool’s Command-Line Interface” on page 43.

v use a search string to locate functions within the Main Window’s Source Tree.
For more information, refer to “Searching for Functions in the Application Source
Code” on page 22.

v start and stop execution of connected processes. You might, for example, wish to
suspend execution of your application prior to instrumenting it, and resume
execution after probes have been added. For more information, refer to “Starting
and Stopping Application Execution” on page 20.

v examine standard output and error from, and send standard input to, the
application using the I/O Console Window. For more information, refer to
“Examining Output From, and Sending Input To, the Application” on page 23.

Starting the Performance Collection Tool
Welcome Dialog

You can start the Performance Collection Tool in either graphical-user-interface
mode or command-line mode. For instructions on starting the Performance
Collection Tool in command-line mode, refer to “Using the Performance Collection
Tool’s Command-Line Interface” on page 43. To start the Performance Collection
Tool in graphical-user-interface mode:

1. Enter the pct command at the AIX command prompt.
$ pct

Doing this starts the Performance Collection Tool in graphical-user-interface
mode and opens its first window -- the Welcome Dialog.

Note: If you want to generate diagnostic log files for the Performance Collection
Tool’s run, you can optionally specify a diagnostic log setting using the -d
command-line option when issuing the pct command.
$ pct -d diag_log_setting

IBM Confidential, Limited Rights Data

8 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Where diag_log_setting is one of the values outlined in the following
table, and determines the amount of logging information that will be
generated. The log files generated when you use the diag_log_setting
flag are intended for identifying problems through IBM. When diagnostic
logging is turned on, the Performance Collection Tool will generate a log
file in the directory /tmp on each host machine running target application
processes to which the tool connects. The log file is generated by a
daemon process that handles communication between the Performance
Collection Tool and the target application process. The log file saved to
the /tmp directory will be named dpcld.nnnn (where nnnn is the AIX
process ID of the daemon process).

If diag_log_setting is: Then:

severe The daemon process will generate messages
for fatal and severe error conditions only.

warning In addition to fatal and severe error
conditions, the daemon process will generate
warning messages.

trace In addition to fatal, severe, and warning
messages, the daemon process will also
generate function entry/exit trace information.

detail The most detailed level of diagnostic
messages will be generated by the daemon
process. In addition to the severe, error,
warning, and function entry/exit trace
information, the daemon process will
generate other, more general, information.

2. The Welcome Dialog provides option buttons that enable you to select whether
you would like to load a new application or connect to an existing one.

If: Then:

You want to examine an application that is
not already running.

Select the Load a new application option
button and click the OK command button.

Doing this closes the Welcome Dialog, and
opens the Load Application Dialog. The Load
Application Dialog will enable you to specify
the serial or POE program you wish to run.
For information on filling in the fields of the
Load Application Dialog, refer to “Loading
and Starting a New Application” on page 10.

You want to examine an application that is
already running.

Select the Connect to a running
application option button and click the OK
command button.

Doing this closes the Welcome Dialog, and
opens the Connect Application Dialog. The
Connect Application Dialog will enable you to
specify the serial or POE program to which
you want to connect. For information on
using the Connect Application Dialog to
connect to an application, refer to
“Connecting to a Running Application” on
page 13.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 9

If: Then:

You do not want to make the decision
between whether to load a new, or connect
to an existing, application at this time.

Click on the Cancel command button.

Doing this closes the Welcome Dialog and
opens the Performance Collection Tool’s
Main Window. Since you have neither loaded
a new application, nor connected to an
existing application, the Main Window will not
provide any application information at this
time. You will eventually have to load a new
application (as described in “Loading and
Starting a New Application”) or connect to an
existing application (as described in
“Connecting to a Running Application” on
page 13).

Loading and Starting a New Application
Load Application Dialog

Using the Load Application Dialog, you can load and optionally start execution of, a
serial or POE program. To do this:

1. If the Load Application Dialog is not already open, select the Application →
Connect... menu item off the Main Window’s menu bar.

Doing this opens the Load Application Dialog.

IBM Confidential, Limited Rights Data

10 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

2. Indicate the type of application you will be loading.

If you want to load: Then:

A serial program. Select the serial option button.

A POE application that follows the Single
Program Multiple Data (SPMD) model.

Select the SPMD parallel option button.

A POE application that follows the Multiple
Program Multiple Data (MPMD) model.

Select the MPMD parallel option button.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 11

3. Indicate the executable file(s) you want to load.

If you are loading: Then:

A serial program or an SPMD parallel
program.

In the Executable name field, type in the
absolute path to the executable file you want
to load. If you are unsure of the executable
file name or path, click on the Browse...
command button to the right of the
Executable name field. Doing this will
display a standard file selection dialog that
you can use to locate the executable file.

An MPMD parallel program. In the POE commands file field, type in the
absolute path to a POE commands file
(which lists the individual programs to load).
For more information on creating a POE
commands file for loading multiple programs,
refer to the manual IBM Parallel Environment
for AIX: Operation and Use, Volume 1, Using
the Parallel Operating Environment.

If you are unsure of the POE commands file
name or path, click on the Browse...
command button to the right of the POE
commands file field. Doing this will open a
standard file selection dialog that you can
use to locate the POE commands file.

4. In the Executable arguments field, type in any arguments that you want to
pass to the executable you are loading. Note that these are not POE
arguments, which must instead be typed into another field of this dialog. If you
do not wish to pass any arguments to the executable, leave the Executable
arguments field blank.

Note: If you are loading an MPMD parallel program, the Executable args field
will be grayed out (input disabled). If you want to pass arguments to the
executables of the MPMD program, you must instead specify the
arguments in your POE commands file. For more information on POE
commands files, refer to the manual IBM Parallel Environment for AIX:
Operation and Use, Volume 1, Using the Parallel Operating Environment.

5. If you are loading a POE program, and would like to supply POE arguments to
influence how the executable you are loading will run, type the arguments in the
POE arguments field. For a complete description of POE arguments, refer to
the manual IBM Parallel Environment for AIX: Operation and Use, Volume 1,
Using the Parallel Operating Environment. If you are loading a serial program,
the POE arguments field will be grayed out (input disabled); you cannot and
need not type any information in the field.

6. If you want the application you are loading to read standard input from a file,
type the name of the file in the stdin file field. To select a file for redirected
standard input using a file selection dialog, click on the Browse... button to the
right of the stdin file field. If you do not need to redirect standard input, leave
the stdin file field empty.

7. If you want to redirect standard output from an application to a file, type the
name of the file in the stdout file field. To select a file for redirected standard
output using a file selection dialog, click on the Browse... button to the right of
the stdout file field. If you leave this field empty, standard output will be
displayed in the I/O Console Window as described in “Examining Output From,

IBM Confidential, Limited Rights Data

12 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

and Sending Input To, the Application” on page 23. If you do not need to redirect
standard output, leave the stdout file field empty.

8. If you would like to redirect standard error from the application to a file, type the
name of the file in the stderr file field. To select a file for redirected standard
error using a file selection dialog, click on the Browse... button to the right of
the stderr file field. If you leave this field empty, standard error will be displayed
in the I/O Console Window as described in “Examining Output From, and
Sending Input To, the Application” on page 23. If you do not need to redirect
standard error, leave the stderr file field empty.

9. Once you have filled in the various fields of the Load Application dialog, you
can choose to either merely load the application or load the application and start
its execution. If you chose to merely load the application, execution of the
process(es) will be stopped before the first executable instruction. This enables
you to add performance collection probes to the application process(es) first
before then starting execution.

If : Then:

You want to merely load the
application.

Click on the Load command button.

Doing this loads the application process(es) and closes the
Load Application Dialog. The process(es) will be loaded in a
″stopped state″ – execution will be stopped before the first
executable instruction. This enables you to add performance
collection probes to one or more application processes
before starting execution. For instructions on adding
performance collection probes to one or more processes,
refer to “Specifying MPI Trace Data to Be Collected” on
page 24, “Adding User Markers to Processes” on page 33,
and “Specifying Profile Data To Be Collected” on page 36.
For instructions on starting a loaded application, refer to
“Starting and Stopping Application Execution” on page 20.

You want to load the
application and start its
execution.

Click on the Start command button.

Doing this loads the application and starts its execution. The
Load Application Dialog closes.

Unless you have already selected the type of probe data you plan to collect, the
Probe Data Selection Dialog will open after the Load Application Dialog closes. For
information on filling in the fields of the Probe Data Selection Dialog, refer to
“Selecting (At Tool Start-up Time) the Type of Probe Data To Be Collected” on
page 16.

Connecting to a Running Application
Connect Application Dialog

Using the Connect Application Dialog, you can connect the Performance Collection
Tool to a serial or POE program that is already executing. To do this:

1. If the Connect Application Dialog is not already open, select the Application →
Connect... menu item off the Main Window’s menu bar.

Doing this opens the Connect Application Dialog

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 13

2. In the Connect Application Dialog, select the serial or parallel POE application
you want to connect to by clicking on its process entry in the Select an
application list box. To connect to a POE application, you should select the
controlling POE process (the executing instance of the POE command).

3. Use the Connect Application Dialog’s option buttons to indicate whether the
application you have selected to connect to is a serial or POE application.

If you are connecting to: Then:

A serial application. Select the Connect to a serial application option button.

IBM Confidential, Limited Rights Data

14 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

If you are connecting to: Then:

A parallel application Select the Connect to a POE application option button.

Doing this activates the Connect to all tasks check box
so that it is now selectable

If you would like to
connect to:

Then:

All processes in the POE
application.

Select the Connect to all
tasks check box.

Only the controlling, ″home
node″ POE process.

Do not select the Connect
to all tasks check box. You
can later connect to
individual tasks of the POE
application as described in
“Connecting to One or More
Processes of the Loaded
Application”.

4. Click the OK command button.

Doing this connects the Performance Collection Tool to the selected serial or
POE application, and closes the Connect Application Dialog.

Unless you have already selected the type of probe data you plan to collect, the
Probe Data Selection Dialog will open after the Connect Application Dialog closes.
For information on filling in the fields of the Probe Data Selection Dialog, refer to
“Selecting (At Tool Start-up Time) the Type of Probe Data To Be Collected” on
page 16.

Connecting to One or More Processes of the Loaded Application
When you connect to a POE application as described in “Connecting to a Running
Application” on page 13, you can choose to connect only to the controlling, ″home
node″, POE process. If you choose to do this, you are not connected to any of the
POE application’s individual tasks. You might choose to do this for performance
reasons, since the POE application could have many tasks.

To connect to one or more processes of an application that has already been
loaded into the Performance Collection Tool, follow the instructions below. If the
application has not been loaded into the Performance Collection Tool, refer to
“Loading and Starting a New Application” on page 10 instead.

1. Select one or more of the unconnected processes listed in the Main Window’s
Process List area. The process’ entry in the ″Connected″ column will read either
″true″ or ″false″ to indicate whether it is connected.

If you want to: Then:

Connect to a single process or selected
processes of the application.

Click on the process entry in the Process List
area. To select more than one process, hold
the shift or control key down while you click
on each process entry.

Connect to all processes in the application. Select the Process → Select all menu item
off the Main Window’s menu bar.

Selecting a process entry in the Main Window’s Process List area highlights the
entry to show that the process is selected. Once one or more processes are
selected, be aware that certain further actions you can request using the

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 15

Performance Collection Tool (such as connecting or adding data collection
probes) will be performed on the selected processes only.

2. Select the Process → Connect menu item off the Main Window’s menu bar.

Doing this connects the Performance Collection Tool to the selected
process(es).

Once a process is connected, the Performance Collection Tool can:

v start or stop its execution (as described in “Starting and Stopping Application
Execution” on page 20).

v add data collection probes to the process (as described in “Specifying MPI Trace
Data to Be Collected” on page 24, “Adding User Markers to Processes” on
page 33, and “Specifying Profile Data To Be Collected” on page 36).

v remove data collection probes from the process (as described in “Removing
Performance Collection Probes From One or More Processes” on page 39).

v terminate the process (as described in “Terminating Connected Processes” on
page 42) When you no longer need to perform such tasks on the process, you
can disconnect it (as described in “Disconnecting From One or More Processes
of the Loaded Application” on page 20).

Selecting (At Tool Start-up Time) the Type of Probe Data To Be
Collected

Probe Data Selection Dialog

The Performance Collection Tool is capable of collecting two different types of
information. It can collect:

v MPI and user event traces for analysis using the utestats utility or a graphical
visualization tool like Jumpshot (a public domain tool developed at Argonne
National Laboratory). For more information on the utestats utility, as well as
utilities for converting the AIX trace files created by the Performance Collection
Tool into a format readable by utestats and Jumpshot, refer to “Chapter 4.
Creating, Converting, and Viewing Information Contained In, UTE Interval Files”
on page 91.

v Hardware and operating system profiles for analysis within the Profile
Visualization Tool. For more information on the Profile Visualization Tool, refer to
“Chapter 3. Using the Profile Visualization Tool” on page 65.

Upon starting the Performance Collection Tool (as described in “Starting the
Performance Collection Tool” on page 8), you are given the choice to either load a
new application using the Load Application Dialog (as described in “Loading and
Starting a New Application” on page 10) or connect to an existing application using
the Connect Application Dialog (as described in “Connecting to a Running
Application” on page 13). After clicking the OK button on either of these dialogs, the
Probe Data Selection Dialog opens.

IBM Confidential, Limited Rights Data

16 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

If the Probe Data Selection Dialog is not already open, refer to “Selecting (After
Tool Startup Time) the Type of Probe Data To Be Collected” on page 18 instead of
the following instructions.

1. Specify the type of data you want to collect by selecting either the MPI and
user event traces or the Hardware and operating system profiles option
button.

If: Then:

You want to collect MPI or custom user
event traces for analysis using the utestats
utility or a graphical visualization tool like
Jumpshot.

Select the MPI and user event traces
option button.

You want to collect hardware and operating
system profiles for analysis within the Profile
Visualization Tool.

Select the Hardware and operating system
profiles option button.

2. The data collected by the Performance Collection Tool will be stored to an
output directory on each host machine where a connected process is running.
Type the name of the desired output directory in the Data Collection Output
Directory field.

3. The data collected by the Performance Collection Tool will be saved as a file on
each host machine where an instrumented process is running. The file name

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 17

will consist of a ″base name″ that you supply followed by a node-specific suffix
supplied by the Performance Collection Tool. Type the ″base name″ for the
output file(s) in the Data Collection Output File Basename field.

4. Click the OK command button.

Doing this closes the Probe Data Selection Dialog and opens the Main Window.
The Probe Selection area of the Main Window will now show options only for
the type of data – MPI trace or hardware/operating system profiles – that you
have selected. When you add performance collection probes to one or more
processes (as described in “Specifying MPI Trace Data to Be Collected” on
page 24, “Adding User Markers to Processes” on page 33, and “Specifying
Profile Data To Be Collected” on page 36), the data collected will be saved, on
each host running instrumented processes, to the directory specified with the file
basename specified.

Note: You can select the type of data to collect only one time per load or connect.

Selecting (After Tool Startup Time) the Type of Probe Data To Be
Collected

Select Data Collection Output Location Dialog

The Performance Collection Tool is capable of collecting two different types of
information. It can collect:

v MPI and user event traces for analysis using the utestats utility or a graphical
visualization tool like Jumpshot (a public domain tool developed at Argonne
National Lab). For more information on the utestats utility, as well as utilities for
converting the AIX trace files created by the Performance Collection Tool into a
format readable by utestats and Jumpshot, refer to “Chapter 4. Creating,
Converting, and Viewing Information Contained In, UTE Interval Files” on
page 91.

v Hardware and operating system profiles for playback within the Profile
Visualization Tool. For more information on the Profile Visualization Tool, refer to
“Chapter 3. Using the Profile Visualization Tool” on page 65.

Upon starting the Performance Collection Tool (as described in “Starting the
Performance Collection Tool” on page 8), you are presented with a number of
dialogs requesting information before the Main Window is displayed. One of these
dialogs is the Probe Data Selection Dialog. If the Probe Data Selection Dialog is
open, refer to “Selecting (At Tool Start-up Time) the Type of Probe Data To Be
Collected” on page 16 instead of the following instructions.

1. Select the type of data you want to collect by selecting either the Probe →
Collect event trace data... or Probe → Collect profile data... menu item off the
Main Window’s menu bar.

If these options are grayed out (unselectable), this means that you have already
specified the type of probe data that you wish to collect. You can select the type
of data to collect only one time per load and connect. If you want to change
your selection, you will have to exit the tool (as described in “Exiting the
Performance Collection Tool” on page 42) and then reload or reconnect the
application.

If: Then:

You want to collect MPI or custom user
event traces for analysis using the utestats
utility or a graphical visualization tool like
Jumpshot.

Select the Probe → Collect event trace
data... menu item off the Main Window’s
menu bar.

IBM Confidential, Limited Rights Data

18 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

If: Then:

You want to collect hardware and operating
system profiles for analysis within the Profile
Visualization Tool.

Select the Probe → Collect profile data...
menu item off the Main Window’s menu bar.

Selecting either the Probe → Collect event trace data... or Probe → Collect
profile data... menu item opens the Select Data Collection Output Location
Dialog.

2. The data collected by the Performance Collection Tool will be stored to an
output directory on each host machine where an instrumented process is
running. Type the name of the desired output directory in the Data Collection
Output Directory field.

3. The data collected by the Performance Collection Tool will be saved as a file on
each host machine where a connected process is running. The file name will
consist of a ″base name″ that you supply followed by a node-specific suffix
supplied by the Performance Collection Tool. Type the ″base name″ for the
output file(s) in the Data Collection Output File Basename field.

4. Click the OK command button.

Doing this closes the Select Data Collection Output Location Dialog. The Probe
Selection area of the Main Window will now show options only for the type of
data – MPI trace or hardware/operating system profiles – that you have
selected. When you add data collection probes to one or more processes (as
described in “Specifying MPI Trace Data to Be Collected” on page 24, “Adding
User Markers to Processes” on page 33, and “Specifying Profile Data To Be
Collected” on page 36), the data collected will be saved, on each host running
instrumented processes, to the directory specified with the file basename
specified.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 19

Starting and Stopping Application Execution
Once a process of the loaded application is connected, you can use the
Performance Collection Tool to start and stop execution of the process as desired.
A process is connected if the ″Connected″ column in the Process List area reads
″true″. For information on connecting processes, refer to “Connecting to One or
More Processes of the Loaded Application” on page 15.

v To start execution of the connected processes in the currently loaded application,
select the Application → Start menu item off the Main Window’s menu bar. If the
Application → Start menu item is grayed out (unselectable), this means that no
processes are connected or the connected processes are already executing.

v To stop execution of the connected processes in the currently loaded application,
select the Application → Suspend menu item off the Main Window’s menu bar. If
the Application → Suspend menu item is grayed out (unselectable), this means
that no processes are connected or the connected processes are already
stopped. When you stop execution of a process, the process’ entry in the
″Status″ column will read ″suspended″.

When you start execution of a process, the process’ entry in the ″Status″ column
will read ″running″.

Disconnecting From One or More Processes of the Loaded Application
To disconnect from one or more connected processes of the loaded application:

1. Select the connected process(es) you want to disconnect.

If: Then:

You want to disconnect all connected
processes in the application.

Select the Process → Select All Connected
menu item off the Main Window’s menu bar.

You want to disconnect individual connected
processes.

In the Main Window’s Process List area, click
on the connected process(es) you want to
disconnect. A process is connected if the
″Connected″ column in the Process List area
reads ″true″.

Selecting one or more connected processes as described in the preceding
table, highlights the selected process(es) in the Main Window’s Process List
area. Once one or more processes are selected, be aware that certain further
actions you can request using the Performance Collection Tool (such as
disconnecting processes) will be performed for the selected processes only.

2. Select the Process → Disconnect menu item off the Main Window’s menu bar.

The Performance Collection Tool disconnects the selected process(es). The
″Connected″ column in the Process List area reads ″false″ for each
disconnected process.

Viewing Application Source Code
View Source Window

The Source Tree area of the Performance Collection Tool’s Main Window provides
a hierarchical view of the source code associated with the currently selected
process. By selecting entries in this tree, you can add or remove data collection
probes to/from the process(es) selected in the Process List area of the Performance
Collection Tool’s Main Window. (For more information on adding and removing data
collection probes, refer to “Specifying MPI Trace Data to Be Collected” on page 24,
“Adding User Markers to Processes” on page 33, “Specifying Profile Data To Be

IBM Confidential, Limited Rights Data

20 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Collected” on page 36, and “Removing Performance Collection Probes From One or
More Processes” on page 39.) Since the information in the Source Tree area is just
a summary of the source code structure, you may, if you require more detailed
information, want to display the actual source code. To do this:

1. If the desired Source Tree is not already displayed, go to the Process List area
and click on the process associated with the source code you want to view.
Doing this displays the Source Tree for the selected process in the Source Tree
area.

2. In the Source Code tree, do one of the following:

Either: Or: Or:

double click on the name of
the file whose source code
you want to view.

a. Right click on the name
of the file whose source
code you want to view.

Doing this displays a
pop-up menu.

b. Select View source... off
the pop-up menu.

a. Click on the name of the
file whose source code
you want to view.

Doing this highlights the
file’s entry to show that it
is selected.

b. Select the Source → View
Source... menu item off
the Main Window’s menu
bar.

Doing any one of the above opens the View Source Window.

Note: The Performance Collection Tool searches for the source file using a
search path that, by default, is the directory in which the tool was started.
If the Performance Collection Tool is unable to locate the source file, it is
because the source file is not in the search path. To modify the search
path, refer to “Setting User Preferences”

Screen Capture (Showing the View Source Window) Will Be Inserted Here.

When you are through viewing the selected source code, you can close the View
Source Window by selecting its File → Close menu item.

Setting User Preferences
Preferences Dialog

There are a number of user preferences you can set using the Preferences Dialog.
Specifically, you can:

v determine whether the scripting commands produced as a result of your
manipulating the Performance Collection Tool’s graphical user interface are
displayed in the Main Window’s Information Area and/or saved to a file. Since
your actions on the graphical user interface are translated into the same scripting
commands you would issue to the Performance Collection Tool’s command-line
interface, this enables you to:

– more quickly learn the scripting commands or

– create reusable scripts for the command-line interface.

For more information on the Performance Collection Tool’s command-line
interface, refer to “Using the Performance Collection Tool’s Command-Line
Interface” on page 43.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 21

v Specify the search path that the Performance Collection Tool uses to locate
source code files to be displayed within the View Source Window. Refer to
“Viewing Application Source Code” on page 20 for more information on the View
Source Window.

To set user preferences:

1. Select the Application → User Preferences... menu off the Main Window’s
menu bar.

Doing this opens the Preferences Dialog.

Screen Capture (Showing the Preferences Dialog) Will Be Inserted Here.

2. If you want to display the script commands that result from your interface
interactions, select the display script commands in information window
check box.

3. If you would like to save the script commands that result from your interface
interactions to a file:

a. Select the save script commands to a file check box.

Doing this activates the save script commands to a file text entry field, so
that you can now type in it.

b. Type a file name in the save script commands to a file text entry field.

To select a file using a standard file selection dialog, click on the Browse...
command button to the right of the text entry field.

4. By default, the search path used to locate source files displayed in the View
Source Window consists only of the directory in which the Performance
Collection Tool was started. If you want to modify this path, type the new path or
paths in the source path for displaying source files text entry field. To
separate paths, use the pipe character (|).

5. Click the OK command button.

Doing this records your preferences and closes the Preferences Dialog.

Searching for Functions in the Application Source Code
Function Search Dialog

The Function Search Dialog enables you to use a search string to locate functions
within the source tree. To do this:

1. If the Source Tree is not already displayed, go to the Process List area and click
on the process associated with the source code you want to search.

Doing this displays the source tree for the selected process in the Source Tree
area.

2. Select the Source → Find function... menu item off the Main Window’s menu
bar.

Doing this opens the Function Search Dialog.

Screen Capture (Showing the Function Search Dialog)
Will Be Inserted Here.

3. Type the search string that identifies the function(s) you wish to locate in the
Source Tree, and click the Find command button.

Doing this displays any function names that match the supplied search string. If
there are no functions listed, this means that no functions matching your search
string were found; repeat this step using a different search string.

IBM Confidential, Limited Rights Data

22 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Screen Capture (Showing the Function Search Dialog including a search string)
Will Be Inserted Here.

4. In the Search Results area, click on the name of the function you want to
locate in the Source Tree.

Doing this highlights the function name to show that it is selected.

5. Locate the function in the Source Tree by clicking either the Goto or Apply
command button as described in the following table.

If you want to: Then:

Locate the function in the Source Tree and
close the Function Search Dialog.

Click the Goto command button.

Doing this highlights the function in the
Source Tree. The Source Tree is expanded if
necessary, and the Function Search Dialog
closes.

Locate the function in the Source Tree, but
keep the Function Search Dialog open.

Click the Apply command button.

Doing this highlights the function in the
Source Tree. The Source Tree is expanded if
necessary.

Since the Function Search Dialog remains
open, you can repeat the steps outlined
above to perform another search. To close
the Function Search Dialog, click the Done
command button.

Examining Output From, and Sending Input To, the Application
I/O Console Window

The I/O Console Window enables you to examine standard output and standard
error from, and send standard input to, the loaded application (provided you did not
redirect the standard output, standard error, or standard input when loading the
application as described in “Loading and Starting a New Application” on page 10). If
you redirected standard output, it will not appear in the I/O Console Window. If you
redirected standard error, it will not appear in the I/O Console Window. If you
redirected standard input, you cannot send text to standard input using the I/O
Console Window. To open the I/O Console Window from the Application pulldown
menu on the Main Window.

If the I/O Console Window is not already open, select the Application → Show I/O
Console... menu item off the Main Window’s menu bar.

Doing this opens the I/O Console Window.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 23

The top area of the I/O Console Window displays standard output from the loaded
application, while the middle area displays standard error.

To send standard input to the application, type the standard input text into the
bottom area of the I/O Console Window and select the File → Submit Stdin menu
item off the I/O Console Window’s menu bar. To send an end-of-file character to the
application, select the File → Submit Stdin EOF menu item off the I/O Console
Window’s menu bar.

To close the I/O Console Window when you are through examining output from, or
sending input to, the loaded application, select the File → Close menu item off the
I/O Console Window’s menu bar.

Specifying MPI Trace Data to Be Collected
MPI Events Tab

IBM Confidential, Limited Rights Data

24 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Using the MPI Events Tab of the Main Window’s Probe Selection Area, you can
specify which MPI events you want to collect data for. The MPI Events Tab is
displayed in the Main Window’s Probe Selection Area only if you have indicated that
you want to collect MPI or custom user event traces.

To specify which MPI events you want to collect:

1. Select the connected process(es) you want to instrument with performance
collection probes. You can either instrument all connected processes of the
application, or individual connected processes.

If: Then:

You want to instrument all connected
processes in the application.

Select the Process → Select All Connected
menu item off the Main Window’s menu bar.

You want to instrument individual connected
processes.

In the Main Window’s Process List area, click
on the connected process(es) to which you
want to add the performance collection
probes. A process is connected if the
″connected″ column in the Process List area
reads ″True″.

Selecting one or more connected processes, as described in the preceding
table, highlights the selected process(es) in the Main Window’s Process List
area. Once one or more processes are selected, be aware that certain further
actions you can request using the Performance Collection Tool (such as adding
performance collection probes) will be performed on the selected processes
only.

2. In the Main Window’s Source Tree area, select the location(s) where you want
the performance collection probes added.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 25

If: Then:

You want to instrument the entire executable. Click on the executable name in the source
tree.

Doing this highlights the executable name to
show that it is selected.

You want to instrument one or more of the
executable’s source files.

Click on the source file name(s) in the
Source Tree. If the source file names are not
visible, you may need to expand the source
tree. A handle icon to the left of entries in the
Source Tree indicates that there is additional,
unexpanded, information under that entry. To
expand the Source Tree to see the additional
information, click on the handle icon.

Selecting a source file name in the source
tree highlights the file name to show that it is
selected.

You want to instrument one or more
functions.

Click on the function name(s) in the source
tree. If the function names are not visible,
you may need to expand the source tree. A
handle icon to the left of entries in the
Source Tree indicate that there is additional,
unexpanded, information under that entry. To
expand the Source Tree to see the additional
information, click on the handle icon.

Selecting a function name in the Source Tree
highlights the name to show that it is
selected.

3. In the MPI Events Tab, select the MPI events you want to collect data for.

If you want to collect data for: Then:

All MPI events Click on the All MPI events check box.

Doing this automatically selects all the
remaining check boxes in the MPI Events
Tab. The Performance Collection Tool will
now generate trace records for all of the MPI
functions listed in this table.

IBM Confidential, Limited Rights Data

26 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

If you want to collect data for: Then:

Blocking collective communication Click on the Collective communication
check box. The Performance Collection Tool
will now generate trace records for the
following MPI functions:
v MPI_Allgather
v MPI_Allgatherv
v MPI_Allreduce
v MPI_Alltoall
v MPI_Alltoallv
v MPI_Barrier
v MPI_Bcast
v MPI_Gather
v MPI_Gatherv
v MPI_Op_create
v MPI_Op_free
v MPI_Reduce
v MPI_Reduce_scatter
v MPI_Scan
v MPI_Scatter
v MPI_Scatterv

Point-to-point communication Click on the Point-to-point communication
check box. The Performance Collection Tool
will now generate trace records for the
following MPI functions:
v MPI_Bsend
v MPI_Bsend_init
v MPI_Buffer_attach
v MPI_Buffer_detach
v MPI_Cancel
v MPI_Get_count
v MPI_Ibsend
v MPI_Iprobe
v MPI_Irecv
v MPI_Irsend
v MPI_Isend
v MPI_Issend
v MPI_Probe
v MPI_Recv
v MPI_Recv_init
v MPI_Request_free
v MPI_Rsend
v MPI_Rsend_init
v MPI_Send
v MPI_Send_init
v MPI_Sendrecv
v MPI_Sendrecv_replace
v MPI_Ssend
v MPI_Ssend_init
v MPI_Start_mpi
v MPI_Startall
v MPI_Test_cancelled

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 27

If you want to collect data for: Then:

One-sided communication Click on the One-sided communication
check box. The Performance Collection Tool
will now generate trace records for the
following MPI functions:
v MPI_Accumulate
v MPI_Get
v MPI_Put
v MPI_Win_complete
v MPI_Win_create
v MPI_Win_create_errhandler
v MPI_Win_create_keyval
v MPI_Win_delete_attr
v MPI_Win_fence
v MPI_Win_free
v MPI_Win_free_keyval
v MPI_Win_get_attr
v MPI_Win_get_errhandler
v MPI_Win_get_group
v MPI_Win_lock
v MPI_Win_post
v MPI_Win_set_attr
v MPI_Win_set_errhandler
v MPI_Win_start
v MPI_Win_unlock

Communication groups Click on the Communication groups check
box. The Performance Collection Tool will
now generate trace records for the following
MPI functions:
v MPI_Comm_group
v MPI_Group_compare
v MPI_Group_difference
v MPI_Group_excl
v MPI_Group_free
v MPI_Group_incl
v MPI_Group_intersection
v MPI_Group_range_excl
v MPI_Group_range_incl
v MPI_Group_rank
v MPI_Group_size
v MPI_Group_translate_ranks
v MPI_Group_union

IBM Confidential, Limited Rights Data

28 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

If you want to collect data for: Then:

Topologies Click on the Topologies check box. The
Performance Collection Tool will now
generate trace records for the following MPI
functions:
v MPI_Cart_coords
v MPI_Cart_create
v MPI_Cart_get
v MPI_Cart_map
v MPI_Cart_rank
v MPI_Cart_shift
v MPI_Cart_sub
v MPI_Cartdim_get
v MPI_Dims_create
v MPI_Graph_create
v MPI_Graph_get
v MPI_Graph_map
v MPI_Graph_neighbors
v MPI_Graph_neighbors_count
v MPI_Graphdims_get
v MPI_Topo_test

Test operations Click on the Test check box. The
Performance Collection Tool will now
generate trace records for the following MPI
functions:
v MPI_Test
v MPI_Testall
v MPI_Testany
v MPI_Testsome
v MPI_Win_test

Nonblocking collective communication Click on the Nonblocking collective
communication check box. The
Performance Collection Tool will now
generate trace records for the following MPI
functions:
v MPI_Iallgather
v MPI_Iallgatherv
v MPI_Iallreduce
v MPI_Ialltoall
v MPI_Ialltoallv
v MPI_Ibarrier
v MPI_Ibcast
v MPI_Igather
v MPI_Igatherv
v MPI_Ireduce
v MPI_Ireduce_scatter
v MPI_Iscan
v MPI_Iscatter
v MPI_Iscatterv

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 29

If you want to collect data for: Then:

Environmental Click on the Environmental check box. The
Performance Collection Tool will now
generate trace records for the following MPI
functions:
v MPI_Abort
v MPI_Comm_create_errhandler
v MPI_Comm_get_errhandler
v MPI_Comm_set_errhandler
v MPI_Errhandler_create
v MPI_Errhandler_free
v MPI_Errhandler_get
v MPI_Errhandler_set
v MPI_Error_class
v MPI_Error_string
v MPI_File_create_errhandler
v MPI_File_get_errhandler
v MPI_File_set_errhandler
v MPI_Finalize
v MPI_Get_processor_name
v MPI_Get_version
v MPI_Init
v MPI_Initialized
v MPI_Pcontrol
v MPI_Wtick
v MPI_Wtime

Derived data types Click on the Data type check box. The
Performance Collection Tool will now
generate trace records for the following MPI
functions:
v MPI_Address
v MPI_Alloc_mem
v MPI_Free_mem
v MPI_Get_elements
v MPI_Pack
v MPI_Pack_size
v MPI_Type_commit
v MPI_Type_contiguous
v MPI_Type_create_darray
v MPI_Type_create_keyval
v MPI_Type_create_subarray
v MPI_Type_delete_attr
v MPI_Type_dup
v MPI_Type_extent
v MPI_Type_free
v MPI_Type_free_keyval
v MPI_Type_get_attr
v MPI_Type_get_contents
v MPI_Type_get_envelope
v MPI_Type_hindexed
v MPI_Type_hvector
v MPI_Type_indexed
v MPI_Type_lb
v MPI_Type_set_attr
v MPI_Type_size
v MPI_Type_struct
v MPI_Type_ub
v MPI_Type_vector
v MPI_Unpack

IBM Confidential, Limited Rights Data

30 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

If you want to collect data for: Then:

File operations Click on the File check box. The
Performance Collection Tool will now
generate trace records for the following MPI
functions:

v MPI_File_close

v MPI_File_delete

v MPI_File_get_amode

v MPI_File_get_atomicity

v MPI_File_get_byte_offset

v MPI_File_get_group

v MPI_File_get_info

v MPI_File_get_position

v MPI_File_get_position_shared

v MPI_File_get_size

v MPI_File_get_type_extent

v MPI_File_get_view

v MPI_File_iread

v MPI_File_iread_at

v MPI_File_iread_shared

v MPI_File_iwrite

v MPI_File_iwrite_at

v MPI_File_iwrite_shared

v MPI_File_open

v MPI_File_preallocate

v MPI_File_read

v MPI_File_read_all

v MPI_File_read_all_begin

v MPI_File_read_all_end

v MPI_File_read_at

v MPI_File_read_at_all

v MPI_File_read_at_all_begin

v MPI_File_read_at_all_end

v MPI_File_read_ordered

v MPI_File_read_ordered_begin

v MPI_File_read_ordered_end

v MPI_File_read_shared

v MPI_File_seek

v MPI_File_seek_shared

v MPI_File_set_atomicity

(continued...)

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 31

If you want to collect data for: Then:

File operations (continued) v MPI_File_set_info

v MPI_File_set_size

v MPI_File_set_view

v MPI_File_sync

v MPI_File_write

v MPI_File_write_all

v MPI_File_write_all_begin

v MPI_File_write_all_end

v MPI_File_write_at

v MPI_File_write_at_all

v MPI_File_write_at_all_begin

v MPI_File_write_at_all_end

v MPI_File_write_ordered

v MPI_File_write_ordered_begin

v MPI_File_write_ordered_end

v MPI_File_write_shared

v MPI_Register_datarep

Info operations Click on the Info check box. The
Performance Collection Tool will now
generate trace records for the following MPI
functions:
v MPI_Info_create
v MPI_Info_delete
v MPI_Info_dup
v MPI_Info_free
v MPI_Info_get
v MPI_Info_get_nkeys
v MPI_Info_get_nthkey
v MPI_Info_get_valuelen
v MPI_Info_set

IBM Confidential, Limited Rights Data

32 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

If you want to collect data for: Then:

Communicators Click on the Communicators check box.
The Performance Collection Tool will now
generate trace records for the following MPI
functions:
v MPI_Attr_delete
v MPI_Attr_get
v MPI_Attr_put
v MPI_Comm_compare
v MPI_Comm_create
v MPI_Comm_create_keyval
v MPI_Comm_delete_attr
v MPI_Comm_dup
v MPI_Comm_free
v MPI_Comm_free_keyval
v MPI_Comm_get_attr
v MPI_Comm_rank
v MPI_Comm_remote_group
v MPI_Comm_remote_size
v MPI_Comm_set_attr
v MPI_Comm_size
v MPI_Comm_split
v MPI_Comm_test_inter
v MPI_Intercomm_create
v MPI_Intercomm_merge
v MPI_Keyval_create
v MPI_Keyval_free

Wait operations Click on the Wait check box. The
Performance Collection Tool will now
generate trace records for the following MPI
functions:
v MPI_Wait
v MPI_Waitall
v MPI_Waitany
v MPI_Waitsome
v MPI_Win_wait

4. Click the Add command button below the MPI Events Tab, or select the Probe
→ Add menu item off the Main Window’s menu bar.

Doing this adds the probes you have selected in the MPI Events Tab to the
process(es) selected in the Process List. The selected data will be collected for
the locations selected in the Source Tree. The trace output file will be stored to
the location you specified in either the Probe Data Selection Dialog or the
Select Data Collection Output Location Dialog.

Adding User Markers to Processes
User Markers Tab

As described in “Specifying MPI Trace Data to Be Collected” on page 24, you can
specify, by selecting various check boxes in the MPI Events Tab, the type of MPI
events you want to collect data for. In addition to adding trace data probes for
collecting standard MPI events (such as collective, point-to-point, or one-sided
communication events), you can also add user markers to processes. User markers
are special types of probes that you can install at specific instrumentation points in
your application code. With user markers, you can:

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 33

v Mark events of interest (such as program function calls) using a simple marker. A
simple marker will appear in the trace record as a single point; its position gives
you a frame of reference when analyzing the trace record in a graphical
visualization tool like Jumpshot.

v Mark a state of interest using a begin state marker and an end state marker. A
state marked by begin and end state markers will appear in the trace record as a
region. Like the simple markers, this gives you a frame of reference when
analyzing the trace record in a graphical visualization tool like Jumpshot.

v Force tracing on or off using a trace on marker or a trace off marker. Since you
can add MPI probes only at a program, file, or function level (meaning that the
entire program, file, or function will be traced), the trace on/trace off markers give
you more control over which part of your program is traced.

To add user markers to one or more processes:

1. Select the connected process(es) you want to instrument.

If: Then:

You want to instrument all connected
processes in the application.

Select the Process → Select All Connected
menu item off the Main Window’s menu bar.

You want to instrument individual connected
processes.

In the Main Window’s Process List area, click
on the connected process(es) to which you
want to add the user markers. A process is
connected if the ″Connected″ column in the
Process List area reads ″True″.

Selecting one or more connected processes, as described in the preceding
table, highlights the selected process(es) in the Main Window’s Process List
area. Once one or more processes are selected, be aware that certain further
actions you can request using the Performance Collection Tool (such as adding
user markers) will be performed on the selected processes only.

2. In the Main Window’s Source Tree area, click on the name(s) of the source
file(s) you want to instrument. If the source file names are not visible, you may
need to expand the source tree. A handle icon to the left of the entries in the
Source Tree indicates that there is additional, unexpanded, information under
the entry. To expand the Source Tree to see the additional information, click on
the handle icon.

Selecting a source file name in the Source Tree highlights the file name to show
that it is selected.

3. In the Main Window’s Probe Selection area, click on the User Markers tab.

IBM Confidential, Limited Rights Data

34 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

The User Markers Tab displays the instrumentation points associated with the
selected source file(s). The instrumentation points are the various locations in
the source code where you can insert the user markers. If you are unfamiliar
with the program you are instrumenting, and need more detailed information on
the source code than is presented in this dialog, refer to “Viewing Application
Source Code” on page 20.

4. Add the simple marker, begin and end state markers, or trace on and trace off
markers as described in the following table.

If: Then:

You want to trace a
simple event (one that
does not measure a
state and so requires
only a single user marker
inserted in the code).

Insert a simple marker. To do this:

a. In the User Markers tab, select the Simple event option
button.

b. In the User Markers tab, click on the instrumentation point
location where you want to insert your simple marker.

c. In the User Markers tab, type the name for the simple marker
in the State/Event Name field. Note that the name you give
the simple marker must be unique among all user markers
you add.

d. Click the Add command button.

Doing this adds a simple marker at the selected
instrumentation point.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 35

If: Then:

You want to trace a state
by marking the beginning
and end of the state.

Insert begin state and end state markers. To do this:

a. In the User Markers tab, type the common name for the
begin- and end-state markers in the State/Event Name field.
Note that you can only use a particular name for one begin
marker/end marker pair, and it cannot be a name already
assigned to a simple marker.

b. In the User Markers tab, select the Begin-state marker
option button.

c. In the User Markers tab, click on the instrumentation point
location where you want to insert the begin state marker.

d. Click the Add command button below the User Markers tab.
Doing this adds a begin state marker with the name indicated
at the selected instrumentation point.

e. In the User Markers tab, select the End-state marker option
button.

f. In the User Markers tab, click on the instrumentation point
location where you want to insert the end state marker.

g. Click the Add command button below the User Markers tab.
Doing this adds an end state marker with the name indicated
at the selected instrumentation point.

Note: When adding begin and end state markers, be aware that
you should not nest markers of the same state. Executing a
begin-state probe while already in that state, or executing and
end-state probe before a begin state probe has executed, will
have no effect. Attempting to, or accidentally, nesting state
markers will not result in an error, but may yield unusual or
incorrect information in the resulting trace file.

You want to force tracing
off or on.

Insert a trace off or trace on marker. To do this:

a. In the User Markers Tab, select either the Force tracing on
or Force tracing off option button.

b. In the User Markers tab, click on the instrumentation point at
which you want to force tracing on or off.

c. Click the Add command button. Doing this adds the trace off
or trace on marker at the selected instrumentation point.

5. Repeat the steps outlined in the above table as many times as needed until all
the desired user markers have been added. In the User Markers tab’s list of
instrumentation points, a lowercase ″m″ indicates that a single user marker is
installed at that instrumentation point. A uppercase ″M″ indicates that there are
multiple user markers installed at the same instrumentation point.

Specifying Profile Data To Be Collected
Select Performance Profiling Probes Panel

IBM Confidential, Limited Rights Data

36 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Using the Select Performance Profiling Probes Panel of the Performance Collection
Tool’s Main Window, you can specify the hardware and operating system
information you want to collect for analysis within the Profile Visualization Tool. The
Select Performance Profiling Probes Panel is displayed in the Main Window’s Probe
Selection Area only if you have indicated that you want to collect hardware and
operating system profile information as described in “Selecting (At Tool Start-up
Time) the Type of Probe Data To Be Collected” on page 16 and “Selecting (After
Tool Startup Time) the Type of Probe Data To Be Collected” on page 18. If the
Select Performance Profiling Probes panel is not already displayed in the
Performance Collection Tool’s Main Window, refer to “Selecting (After Tool Startup
Time) the Type of Probe Data To Be Collected” on page 18.

To specify the profile data to be collected:

1. Select the connected process(es) you want to instrument with performance
collection probes. You can either instrument all connected processes of the
application, or individual connected processes.

If: Then:

You want to instrument all connected
processes in the application.

Select the Process → Select All Connected
menu item off the Main Window’s menu bar.

You want to instrument individual connected
processes.

In the Main Window’s Process List area, click
on the connected process(es) to which you
want to add the performance collection
probes. The process is connected if the
″Connected″ column in the Process List area
reads ″True″.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 37

Selecting one or more connected processes, as described in the preceding
table, highlights the selected process(es) in the Main Window’s Process List
area. Once one or more processes are selected, be aware that certain further
actions you can request using the Performance Collection Tool (such as adding
performance collection probes) will be performed on the selected processes
only.

2. In the Main Window’s Source Tree area, select the location(s) where you want
the performance collection probes added. You can instrument the entire
executable, one or more of the executable’s source files, or one or more
functions. Be aware, however, that instrumenting a file will result in probes being
added to each function or subroutine in the file. Similarly, instrumenting an
entire executable will result in probes being added to every function or
subroutine in every file in the executable. For these reasons, instrumenting an
entire executable or file will be more time and resource intensive than
instrumenting selected functions.

If: Then:

You want to instrument the entire executable. Click on the executable name in the source
tree.

Doing this highlights the executable name to
show that it is selected.

You want to instrument one or more of the
executable’s source files.

Click on the source file name(s) in the
Source Tree. If the source file names are not
visible, you may need to expand the source
tree. A handle icon to the left of entries in the
Source Tree indicates that there is additional,
unexpanded, information under that entry. To
expand the Source Tree to see the additional
information, click on the handle icon.

Selecting a source file name in the source
tree highlights the file name to show that it is
selected.

You want to instrument one or more
functions.

Click on the function name(s) in the source
tree. If the function names are not visible,
you may need to expand the source tree. A
handle icon to the left of entries in the
Source Tree indicates that there is additional,
unexpanded, information under that entry. To
expand the Source Tree to see the additional
information, click on the handle icon.

Selecting a function name in the Source Tree
highlights the name to show that it is
selected.

3. In the Main Window’s Select Performance Profiling Probes Panel, select the
MPI events you want to collect data for.

If you want to collect data for: Then:

Elapsed wall clock time click on the Elapsed wall-clock time check
box.

System resource usage Click on the System resource usage check
box.

IBM Confidential, Limited Rights Data

38 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

If you want to collect data for: Then:

Hardware performance monitor counters. All tasks you want to instrument must be
running on the same type of CPU (either all
running on 604e CPUs or all running on 630
CPUs). In the Hardware counters list, click
on the specific hardware counter group for
which you want to collect information.
Clicking on the name of a hardware counter
group highlights its entry in the list to show
that it is selected.
Note: If your application is running on mixed
CPUs (in other words, some tasks running
on 604e CPUs and some tasks running on
630 CPUs), no hardware counter groups will
be listed.

4. Click the Add command button below the Select Performance Profiling Probes
Panel, or select the Probe → Add menu item off the Main Window’s menu bar.

Doing this adds the probes you have selected in the Select Performance
Profiling Probes Panel to the process(es) selected in the Process List. The
selected data will be collected for the locations selected in the Source Tree. The
output file will be stored to the location you specified in either the Probe Data
Selection Dialog (as described in “Selecting (At Tool Start-up Time) the Type of
Probe Data To Be Collected” on page 16) or the Select Data Collection Output
Location Dialog (as described in “Selecting (After Tool Startup Time) the Type of
Probe Data To Be Collected” on page 18).

Removing Performance Collection Probes From One or More
Processes

When you add performance collection probes to one or more processes (as
described in “Specifying MPI Trace Data to Be Collected” on page 24 and
“Specifying Profile Data To Be Collected” on page 36), the entries for the installed
probes will appear in the Main Window’s Source Tree area. When you install a
number of probe types at the same time, note that they are installed as a probe set
and will be represented by one or more entries (depending on the number of
locations you selected) in the Main Window’s Source Tree. If you install a probe or
a set of probes at the executable level, its entry will appear in a ″ProbeRoot″ folder
under the executable’s entry in the tree. If you install a probe or set of probes at the
file level, its entry will appear in a ″ProbeRoot″ folder under the file’s entry in the
tree. If you install a probe or set of probes at the function level, its entry will appear
in a ″ProbeRoot″ folder under the function’s entry in the tree.

To delete an installed probe or probe set:

1. Select the connected process(es) from which you want to remove the probe or
probe set. You can either select all connected processes of the application, or
individual connected processes.

If: Then:

You want to select all connected processes
in the application.

Select the Process → Select All Connected
menu item off the Main Window’s menu bar.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 39

If: Then:

You want to select individual connected
processes.

In the Main Window’s Process List area, click
on the connected process(es) from which
you want to remove the performance
collection probes. A process is connected if
the ″Connected″ column in the Process List
area reads ″true″.

Selecting one or more connected processes, as described in the preceding
table, highlights the selected process(es) in the Main Window’s Process List
area. Once one or more processes are selected, be aware that certain further
actions you can request using the Performance Collection Tool (such as adding
performance collection probes) will be performed on the selected processes
only.

2. Click on the probe or probe set’s entry in the Source Tree. The probe or probe
set’s entry will appear in the ″ProbeRoot″ directory under the application, file, or
function where the probe or probe set was installed.

Selecting a probe entry in the Source Tree highlights the name to show that it is
selected.

3. Click on the Remove command button in the Probe Selection area, or else
select the Probe → Remove... menu item off the Main Window’s menu bar.

Removing User Markers From Processes
As described in “Adding User Markers to Processes” on page 33, you can add user
markers to processes in order to:

v mark simple events (using simple markers)

v mark states (using begin state markers and end state markers)

v force tracing on or off (using a trace on marker or a trace off marker)

To remove a custom user marker:

1. Select the connected process(es) from which you want to remove the user
marker(s).

If: Then:

You want to select all connected processes
in the application.

Select the Process → Select All Connected
menu item off the Main Window’s menu bar.

You want to select individual connected
processes.

In the Main Window’s Process List area, click
on the connected process(es) from which
you want to remove the user markers. A
process is connected if the ″Connected″
column in the Process List area reads ″true″.

Selecting one or more connected processes, as described in the preceding
table, highlights the selected process(es) in the Main Window’s Process List
area. Once one or more processes are selected, be aware that certain further
actions you can request using the Performance Collection Tool (such as
removing user markers) will be performed on the selected processes only.

2. In the Main Window’s Source Tree area, click on the name(s) of the source
file(s) from which you want to remove the user marker(s). If the source file
names are not visible, you may need to expand the source tree. A handle icon
to the left of the entries in the Source Tree indicates that there is additional,
unexpanded, information under the entry. To expand the Source Tree to see the
additional information, click on the handle icon.

IBM Confidential, Limited Rights Data

40 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Selecting a source file name in the Source Tree highlights the file name to show
that it is selected.

3. In the Main Window’s Probe Selection area, click on the User Markers tab.

The User Markers Tab displays instrumentation points associated with the
selected source files. In the list of instrumentation points, a lowercase ″m″
indicates that a single user marker is installed at that instrumentation point. An
uppercase ″M″ indicates that there are multiple user markers installed at the
same instrumentation point.

4. In the User Markers tab, click on the instrumentation point where you want to
remove a custom user marker.

5. Click on the Remove command button. If there is only one user marker installed
at the selected instrumentation point, the user marker it represents is removed.
If there are multiple user markers installed at the selected instrumentation point,
the Remove Custom Marker Dialog opens.

The Remove Custom Marker Dialog lists the various user markers installed at
the selected instrumentation point. In the Remove Custom Marker Dialog’s list,
click on the entry for the user marker you want to remove, and then click on the
OK command button.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 41

Terminating Connected Processes
Terminate Application Confirmation Dialog

If you are done collecting performance data for one or more connected processes,
you may wish to terminate the process(es). To terminate any connected target
application process(es):

1. Select the Application → Terminate menu item off the Main Window’s menu
bar.

Doing this opens the Terminate Application Confirmation Dialog.

2. The Terminate Application Dialog is displayed in order to prevent accidental
termination of the target application processes. (If, for example, you accidentally
select the Application → Terminate menu item).

If: Then:

You are sure you want to terminate
execution of the target application.

Click on the OK command button.

Doing this terminates any connected target
application process and closes the Terminate
Application Confirmation Dialog.

You do not want to terminate execution of
the target application.

Click on the Cancel command button.

Doing this closes the Terminate Application
Confirmation Dialog. The target application
continues executing.

Note: When working with a POE application, be aware that terminating any
process of the application will cause POE to terminate all of the application’s
processes. This termination of all processes is a function of POE, not of the
Performance Collection Tool. For more information, refer to IBM Parallel
Environment for AIX: Operation and Use, Volume 1, Using the Parallel
Operating Environment.

Exiting the Performance Collection Tool
Exit Tool Dialog

To exit the Performance Collection Tool:

1. Select the Application → Exit menu item off the Main Window’s menu bar.

Doing this opens the Exit Tool Dialog.

IBM Confidential, Limited Rights Data

42 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

2. The Exit Tool Dialog asks if you would also like to ″Terminate the target
application?″

If: Then:

You wish to also terminate the target
application to which the Performance
Collection Tool is connected.

Click on the Yes command button.

Doing this terminates the target application
as well as the Performance Collection Tool,
and closes all of the Performance Collection
Tool windows.

You wish to allow the target application to
continue running.

Click on the No command button.

Doing this terminates the Performance
Collection Tool, but leaves the target
application running.

Using the Performance Collection Tool’s Command-Line Interface
This section describes how you can use the Performance Collection Tool in
command-line mode to collect either MPI and user event traces or hardware and
operating system profiles. The purpose of this section is to illustrate how the various
subcommands of the pct command can be used to instrument serial or POE
programs. Note, however, that this section does not necessarily describe all the
options of all the pct subcommand. For complete reference information on any of
the subcommands describe in this section, refer to the pct command’s man page in
“Appendix B. PE Benchmarker Command Reference” on page 115

This section begins with a brief overview of the tasks you can perform using the
Performance Collection Tool’s command-line interface, and then describes each of
these tasks in more detail. You can also operate the Performance Collection Tool
using its graphical user interface. For information on how to do this, refer to “Using
the Performance Collection Tool’s Graphical User Interface” on page 5.

Performance Collection Tool (Command-Line Interface) Overview
To use the Performance Collection Tool’s command-line interface to collect either
MPI and user event traces or hardware and operating system profiles:

1. Start the Performance Collection Tool in command-line mode by issuing the pct
command with its -cmd option. You can optionally specify the -s option to
instruct the Performance Collection Tool to read its subcommands from a script
file. For more information, refer to “Starting the Performance Collection Tool In
Command-Line Mode” on page 46.

2. Either load and start a new application, or connect to a running application.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 43

v To load and start a new application, use the load subcommand to load either
a serial or POE application. When you load an application, its process
execution will be suspended at its first executable instruction. To start
execution of one or more loaded application processes, issue the start
subcommand. For more information, refer to “Loading and Starting a New
Application” on page 48.

v To connect to a running application, use the connect subcommand. You can
connect to a serial or POE home node process using this subcommand.
Once connected to a POE home node process, you can issue the connect
subcommand again to connect to one or more of its individual tasks. For
more information, refer to “Connecting to a Running Application” on page 49.

When you load or connect to a serial or POE application, two task groups are
created. A task group is simply a named set of tasks — in this case, the task
groups are named ″all″ and ″connected″. Task groups are intended for when
you are working with POE applications as opposed to serial applications. The all
task group represents all the tasks in the POE application, while the connected
task group represents the POE application’s connected tasks only. You can also
create your own named task groups. Task groups enable you to more easily
manipulate the tasks of a POE application, since many of the Performance
Collection Tool’s subcommands are designed to operate upon one or more
tasks. By default, the tasks operated upon are those in a ″current task group″
that you specify. By default, the current task group is the automatically-created
task group connected. If you are instrumenting a serial application, you naturally
do not need to concern yourself with task groups. You should be aware,
however, that the all and connected groups are still created by the Performance
Collection Tool. For more information on task groups, refer to “Grouping Tasks
of a POE Application” on page 47.

3. Select the type of data you will be collecting using the Performance Collection
Tool. You can collect either:

v MPI and user event traces for analysis using the utestats utility or a
graphical visualization tool like Jumpshot.

v hardware and operating system profiles for analysis within the Profile
Visualization Tool.

To specify which type of data you’ll be collecting, use the select subcommand.
For more information, refer to “Selecting Type of Probe Data To Be Collected”
on page 53.

IBM Confidential, Limited Rights Data

44 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

4.

If: Then:

you are collecting MPI and user event traces. a. Set the output location for the trace files
that are generated by the Performance
Collection Tool. To do this, use the trace
set subcommand. For more information,
refer to “Setting the Output Location and
Other Preferences for the AIX Trace Files
Generated” on page 55.

b. Add MPI trace probes and/or custom
user markers using the trace add
subcommand. For more information, refer
to “Adding MPI Trace Probes to
Processes” on page 55 and “Adding User
Markers to Processes” on page 57.

When you are done collecting the trace
data, you can remove the probes using
the trace remove subcommand. For
more information, refer to “Removing MPI
Trace Probes From Processes” on
page 57 and “Removing User Markers
From Processes” on page 58.

you are collecting hardware and operating
system profile information.

a. Set the output location for the profile files
that are generated by the Performance
Collection Tool. To do this, use the
profile set path subcommand. For more
information, refer to “Setting the Output
Location for the NetCDF Files
Generated” on page 59.

b. Add the profile probes to processes
using the profile add subcommand. For
more information, refer to “Adding
Hardware Profile Probes to Processes”
on page 59.

When you are done collecting the profile
data, you can remove the probes using
the profile remove subcommand. For
more information, refer to “Removing
Hardware Profile Probes From
Processes” on page 61.

5. When you are done collecting data, you can terminate connected processes
using the destroy subcommand, or disconnect from the processes using the
disconnect subcommand. To exit the Performance Collection Tool, issue the
exit subcommand. For more information, refer to “Terminating Connected
Processes” on page 61, “Disconnecting From the Application” on page 62, and
“Exiting the Performance Collection Tool” on page 63.

In addition to the tasks summarized above, you can also:

v suspend and resume execution of connected processes by issuing the suspend
and resume subcommands. You might, for example, wish to suspend execution
of your application prior to instrumenting it, and resume execution after the
probes have been added. For more information, refer to “Suspending and
Resuming Application Execution” on page 50.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 45

v send standard input text to you application using the stdin subcommand. For
more information, refer to “Sending Standard Input Text to the Application” on
page 51.

v Display the contents of source files using the list subcommand. For more
information, refer to “Displaying the Contents of a Source File” on page 52.

Starting the Performance Collection Tool In Command-Line Mode
To start the Performance Collection Tool in command-line mode, enter, at the AIX
command prompt, the pct command with its -cmd option:
pct -cmd

You can optionally specify the -s option to instruct the Performance Collection Tool
to read subcommands from a particular script file of Performance Collection Tool
subcommands. As described in “Setting User Preferences” on page 21, you can,
when operating the Performance Collection Tool in graphical-user-interface mode,
have the tool save the command-line equivalent of your interface interactions to a
script file. You can later use the -s option to read this script file when running in
command-line mode. You can also modify the saved script file, or create your own
from scratch, using a text editor. For example, to have the Performance Collection
Tool read the subcommands in the script file myscript.cmd:
pct -cmd -s myscript.cmd

The first thing you’ll want to do after starting the Performance Collection Tool is
either connect to a running application, or load and connect to new application. If
the application you wish to examine is already running, you can connect to it; refer
to “Connecting to a Running Application” on page 49. If the application you wish to
examine is not already running, you can load it; refer to “Loading and Starting a
New Application” on page 48. If you are going to connect or load a POE application,
you need to understand the concept of task groups; refer to “Grouping Tasks of a
POE Application” on page 47.

Note: If you want to generate diagnostic log files for the Performance Collection
Tool’s run, you can optionally specify a diagnostic log setting using the -d
command-line option when issuing the pct command.
$ pct -d diag_log_setting

Where diag_log_setting is one of the values outlined in the following table,
and determines the amount of logging information that will be generated. The
log files generated when you use the diag_log_setting flag are intended for
identifying problems through IBM. When diagnostic logging is turned on, the
Performance Collection Tool will generate a separate log file in the directory
/tmp on each host machine running target application processes to which the
tool connects. The log file is generated by a daemon process that handles
communication between the Performance Collection Tool and the target
application process. The log file saved to the /tmp directory will be named
dpcld.nnnn (where nnnn is the AIX process ID of the daemon process).

If diag_log_setting is: Then:

severe The daemon process will generate messages for
fatal and severe error conditions only.

warning In addition to fatal and severe error conditions, the
daemon process will generate warning messages.

IBM Confidential, Limited Rights Data

46 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

If diag_log_setting is: Then:

trace In addition to fatal, severe, and warning messages,
the daemon process will also generate function
entry/exit trace information.

detail The most detailed level of diagnostic messages will
be generated by the daemon process. In addition
to the severe, error, warning, and function entry/exit
trace information, the daemon process will
generate other, more general, information.

Grouping Tasks of a POE Application
In the Parallel Operating Environment, the multiple cooperating processes of your
program are referred to as ″tasks″. Many of the Performance Collection Tool
subcommands are designed to operate on one or more tasks of a POE application.
By default, the tasks operated upon are those in a ″current task group″ that you can
specify. A task group is simply a named set of tasks. Two such task groups — all
and connected — are created automatically when you either connect to a running
application using the connect subcommand, or load a new application using the
load subcommand. The all task group represents all the tasks in the POE
application. The connected task group is the current task group by default — it
represents the POE application’s connected tasks only. You can also create your
own task groups.

By default, the current task group will be connected; the subcommands you issue
will act upon all connected tasks in the POE application. You can change the
current task group to be the automatically created group all, or a task group that
you have created. You can also, for all of the subcommands that act upon task
groups, specify a set of tasks or a task group when issuing the subcommand. If you
do this, the subcommand will operate on the tasks specified rather than the current
task group. For example, consider the suspend subcommand for suspending
execution of one or more tasks. If you issue this subcommand without options as in:
suspend

The tasks in the current task group are suspended. However, if, on the suspend
subcommand, you specify a task list using the task clause, you suspend execution
for the tasks specified — in this next example tasks 0 through 5:
suspend task 0:5

Note: When using the task clause, the tasks in the POE application can be
specified by listing individual values separated by commas (1,3,8,9), by
giving a range of tasks using a colon to separate the ends of the range
(12:15 refers to tasks 12, 13, 14, and 15), by giving a range and increment
value using colons to separate the range and increment values (20:26:2
refers to tasks 20, 22, 24, and 26), or by using a combination of these
(12:18,22,30).

You can also specify a named task group (other than the current task group) using
the group clause:
suspend group workers

To understand why you might want to specify a task group, consider the following
example. Say that the application you’re examining follows the master/workers
model in which one task (the ″master″) coordinates the activities of all the other
tasks — the ″workers″. You could create two task groups — one containing just the

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 47

master task, and the other containing all the other tasks. To do this, you would use
the group subcommand with its add clause. To create a task group master
containing just task 0:
group add master 0

To create a task group workers containing the tasks 1 through 10:
group add workers 1:10

Once these groups are created, you can make either the current task group. To do
this, you would use the group subcommand with its default clause. For example,
the following subcommand sets the current task group to be the task group master:
group default master

While master is the current task group, any subcommands that operate upon tasks
will operate only upon task 0 — the only task in the group master. To make the
group workers the current task group:
group default workers

While you cannot modify or delete the two groups that the Performance Collection
Tool automatically creates (all and connected), you can modify and delete the
groups that you have created. To add tasks 11 though 20 to the task group workers:
group add workers 11:20

To delete task 11 from the task group workers:
group delete workers 11

To delete the entire task group workers:
group delete workers

Notes:

1. If you are instrumenting a serial application, you naturally do not need to
concern yourself with task groups. You should be aware, however, that the all
and connected groups are still created by the Performance Collection Tool.

2. You can list the existing task groups, or the members of a particular task group,
using the show subcommand. For example, the following subcommand lists the
existing task groups:
>show groups
Default Group Name

all
@ connected

To list the tasks in the task group all:
>show group all
Tid Program Name Host Cpu Type State
--- -------------------------------------- ---------------- -------- ------
0 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
1 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
2 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
3 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded

Loading and Starting a New Application
If the serial or POE application you wish to examine is not already running, you can
load it onto one or more nodes. When you load an application using the load
subcommand, it is loaded in a stopped state with execution suspended at the first
executable instruction. You can then start its execution using the start

IBM Confidential, Limited Rights Data

48 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

subcommand. To load a serial application, you simply supply the load subcommand
with the absolute path to the executable. The exec clause indicates the executable
path. If the application takes arguments, you can specify them using the args
clause. For example:
> load exec /u/example/bin/foo args "a b c"

If loading a POE application, you specify the poe clause, and can also supply any
POE arguments using the poeargs clause. For information on the POE
command-line flags available to you, refer to the manual IBM Parallel Environment
for AIX: Operation and Use, Volume 1, Using the Parallel Operating Environment.

The procedure for loading a POE application differs depending on whether the
application follows the Single Program Multiple Data (SPMD) or Multiple Program
Multiple Data (MPMD) model. If your program follows the SPMD model, you specify
the absolute path to the executable using the exec clause:
> load poe exec /u/example/bin/parallel_foo poeargs "-procs 4 -hfile /tmp/host.list"

If your program follows the MPMD model, you supply the absolute path to a POE
commands file (which lists the individual programs to load) using the mpmdcmd
clause:
> load poe mpmdcmd /u/example/bin/foo.cmds poeargs "-procs 3 -hfile /tmp/host.list"

For information on creating a POE commands file for loading multiple programs,
refer to the manual IBM Parallel Environment for AIX: Operation and Use, Volume
1, Using the Parallel Operating Environment.

The load subcommand also enables you to specify that standard input, standard
output, or standard error should be redirected. To read standard input from a file,
use the stdin clause:
> load exec /u/example/bin/foo args "a b c" stdin input_file

To redirect standard output to a file, use the stdout clause:
> load exec /u/example/bin/foo args "a b c" stdout output_file

To redirect standard error to a file, use the stderr clause:
> load exec /u/example/bin/foo args "a b c" stderr error_file

When you load an application, two task groups — all and connected — are
automatically created, and connected is made the current task group. Task groups
are important to know about only if you are working with a POE application and are
described in “Grouping Tasks of a POE Application” on page 47. Also note that the
application is loaded in a stopped state with execution suspended at the first
executable instruction. To start execution of the application, use the start
subcommand:
start

Connecting to a Running Application
If the serial or POE application you wish to examine is already running, you can
connect to it using the connect subcommand. To list the processes to which you
can connect, use the show subcommand with its ps clause:
> show ps
Pid Command
----- ---
10652 /home/strofino/dpcltest/WORK/prod_cons
13256 /etc/dpcld /tmp/dpclsd

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 49

13316 /home/strofino/dpcltest/WORK/prod_cons
14302 /usr/lpp/ppe.dpcl/dpcl_beta/bin/poe
18108 /home/strofino/dpcltest/WORK/prod_cons
20614 /u/alfeng/public/perf/seqsleep
21996 /u/alfeng/bin/sesmgr
22644 /home/strofino/dpcltest/WORK/prod_cons
22802 java com/ibm/ppe/perf/main/Startup -l /u/alfeng/bin/sesmgr -cmd
23236 -ksh
24894 /etc/dpcld /tmp/dpclsd
27632 -ksh
>

If you are connecting to a serial application, you simply supply the process ID of the
process you wish to connect to using the pid clause of the connect subcommand.
connect pid 12345

If you are connecting to a POE application, you connect to the processes in two
steps. First, you issue the connect subcommand to connect to the controlling,
home node, POE process. Once connected to the controlling POE process, you can
then reissue the connect subcommand to connect to any of its processes. For
example, to connect to the application whose AIX process ID is 12345:
connect poe pid 12345

When you connect to the POE home node process, the Performance Collection
Tool creates two task groups — all and connected. The all task group refers to all of
the tasks in the application, while the connected task group refers only to connected
tasks. The connected task group will initially be empty since no tasks are
connected. You can list the existing task groups by issuing the show subcommand
with its groups clause:
>show groups
Default Group Name

all
@ connected

To connect to all tasks in the POE application:
connect group all

To connect to select tasks in the POE application, use the task clause:
connect task 2,3

Suspending and Resuming Application Execution
The Performance Collection Tool enables you to suspend and resume execution of
connected processes by issuing the suspend and resume subcommands. You
might, for example, wish to suspend execution of your target application prior to
instrumenting it as described in “Collecting MPI Trace and Custom User Marker
Information” on page 54. Once your performance collection probes have been
added to the application, you could resume the application’s execution. By default,
the suspend and resume subcommands act upon the current task group. Unless
you have specified another task group to be the current task group (as described in
“Grouping Tasks of a POE Application” on page 47), the current task group will be
the task group connected. The task group connected is created automatically by the
Performance Collection Tool when you either connect to or load an application (as
described in “Connecting to a Running Application” on page 49 and “Loading and
Starting a New Application” on page 48). The task group connected consists of all
connected tasks in a POE application. If you are instrumenting a serial application,
you do not need to concern yourself with task groups. If you are instrumenting a

IBM Confidential, Limited Rights Data

50 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

POE application, however, it is useful to understand the concept of task groups as
described in “Grouping Tasks of a POE Application” on page 47.

To suspend execution of the tasks in the current task group:
> suspend

To suspend execution of tasks in a specific task group (in this case, the task group
connected), use the group clause on the suspend subcommand:
> suspend group connected

To suspend a specific set of tasks in a POE application, use the task clause on the
suspend subcommand. To determine how many tasks are available, you can use
the show group subcommand to list the tasks in the task group all:
> show group all
Tid Program Name Host Cpu Type State
--- -------------------------------------- ---------------- -------- ------
0 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
1 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
2 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
3 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
.
.
.
> suspend task 1,3

The resume subcommand works in the same way. By default, it operates on the
current task group:
> resume

But you can override this by specifying a task group:
> resume group connected

or supplying a task list:
> resume task 1,5

Sending Standard Input Text to the Application
If you have loaded an application (as described in “Loading and Starting a New
Application” on page 48), you can use the stdin subcommand to send standard
input text to your application. However, if you have instead merely connected to an
application (as described in “Connecting to a Running Application” on page 49), you
cannot send standard input text to the application using the stdin subcommand.

If you are instrumenting a serial application, the standard input text will be set to
that application process. If you are instrumenting a POE application, the standard
input text will be sent to the controlling, ″home node″, POE process. As described
in “Loading and Starting a New Application” on page 48, you can, when loading an
application using the load subcommand, specify that standard input should be read
from a file. If you are reading standard input from a file, you cannot use the stdin
subcommand.

To send a standard input string to the application, specify the sting on the stdin
subcommand. The string must be enclosed in double quotes:
> stdin "Now is the time for all good men"

If desired, you can use embedded formatting characters (such as \n) in your
standard input string:

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 51

> stdin "Now is the time \nfor all good men"

To send a newline character to the input stream reading this input data, issue the
stdin command without any text string:
stdin

To send an end-of-line character to the input stream reading this input data, use the
eof clause on the stdin subcommand:
> stdin eof

Displaying the Contents of a Source File
Using the list subcommand, you can display the contents of source files. Unless
you are certain of the file name of the source file you want to examine, you may
want to list the available source files using the file subcommand. The file
subcommand lists, for one or more connected tasks, the associated source file
names that match a regular expression you supply. By default, the file
subcommand acts upon the current task group. Unless you have specified another
task group to be the current task group (as described in “Grouping Tasks of a POE
Application” on page 47), the current task group will be the task group connected.
The task group connected is created automatically by the Performance Collection
Tool when you either connect to or load an application (as described in “Connecting
to a Running Application” on page 49 and “Loading and Starting a New Application”
on page 48). The task group connected consists of all connected tasks in a POE
application. If you are instrumenting a serial application, you do not need to concern
yourself with task groups. If you are instrumenting a POE application, however, it is
useful to understand the concept of task groups as described in “Grouping Tasks of
a POE Application” on page 47.

You supply the file subcommand with an AIX regular expression file-matching
pattern (enclosed in double quotation marks) to match the source files you want to
list. The files that match the supplied expression(s) are listed in the form
task_identifier:file_identifier:file_name. For example, to list all the available source
files in the current task group:
> file "*"
Tid File Id File Name Path
0 0 bar.c ../../lib/src
0 1 foo1.c ../../lib/src
0 2 foo2.c ../src

Although this subcommand, by default, acts upon the current task group, you can
specify that it should instead act upon a different task group, or all the tasks in a
task list that you supply. This is done by using the task or group clause on the file
subcommand. For more information on the task and group clauses, refer to
“Grouping Tasks of a POE Application” on page 47.

After issuing the file subcommand, you’ll have both the file name and the file
identifier of the source file(s) you want to examine. Now you can use the list
subcommand to display the contents of one or more files. Like the file
subcommand, the list subcommand will, by default, act upon the current task
group. Using either the file or fileid clause of the list subcommand, you indicate
the file(s) whose contents you want listed.

Using the file clause, you supply the list subcommand with an AIX regular
expression file-matching pattern (enclosed in double quotation marks) to match the
source file(s) whose contents you want to list. If desired, you can supply additional

IBM Confidential, Limited Rights Data

52 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

regular expressions separated by commas (file "f*","b*"). For example, the
following subcommand lists the contents of the file bar.c:
list file "bar.c"

While this subcommand lists the contents of the first file found in the application
that begins with the letter ″f″:
list file "f*"

Using the fileid clause, you identify the file whose contents you want to list using
the process identifier(s) returned by the file subcommand. For example, the
following subcommand lists the contents of the file bar.c (whose file identifier is 0):
list fileid 0

Note: When listing the contents of files using the list subcommand, the
Performance Collection Tool uses a special source path to locate the source
files. This source path is, by default, the directory in which the Performance
Collection Tool was started, and can be displayed using the sourcepath
clause on the show subcommand as in:
> show sourcepath
PATH (BASE)

/u/alfeng/bin/
./
>

To modify the source path so that the Performance Collection Tool can locate
source files that are not located in the directory in which the tool was started, use
the set subcommand. As with setting your AIX PATH environment variable, you
separate the various directories in your source path using colons. For example:
> set sourcepath "/afs/aix/u/jbrady:/afs/aix/u/dlecker"

Selecting Type of Probe Data To Be Collected
The Performance Collection Tool is capable of collecting two different types of
information. It can collect:

v MPI and user event traces for analysis using the utestats utility or a graphical
visualization tool like Jumpshot (a public domain tool developed at Argonne
National Lab). For more information on the utestats utility, as well as utilities for
converting the AIX trace files created by the Performance Collection Tool into a
format readable by utestats and Jumpshot, refer to “Chapter 4. Creating,
Converting, and Viewing Information Contained In, UTE Interval Files” on
page 91.

v Hardware and operating system profiles for analysis within the Profile
Visualization Tool. For more information on the Profile Visualization Tool, refer to
“Chapter 3. Using the Profile Visualization Tool” on page 65.

Be aware that, before you can collect either type of information, you must specify,
using the select subcommand, which type you are interested in:

If you want to collect: Then:

MPI and user event traces. Specify the trace clause on the select
subcommand:

select trace

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 53

If you want to collect: Then:

Hardware and operating system profiles. Specify the profile clause on the select
subcommand:

select profile

Note: You can select the type of data to collect only once per load and connect.

Collecting MPI Trace and Custom User Marker Information

Using the Performance Collection Tool, you can collect MPI and user event traces
for:

v analysis using the utestats utility.

v eventual analysis within a graphical visualization tool like Jumpshot.

The trace information collected is stored as an AIX trace file on each node running
instrumented processes. After you have generated these AIX trace files, you can
convert them into the Unified Trace Environment (UTE) format (using the convert
utility) for analysis using the utestats utility. You can then also convert the UTE files
into the SLOG format (using the slogmerge utility) for analysis within Jumpshot.
For more information on the utilities for converting the AIX trace files output by the
Performance Collection Tool into formats readable by the utestats utility and
Jumpshot, refer to “Chapter 4. Creating, Converting, and Viewing Information
Contained In, UTE Interval Files” on page 91.

Before you can use any of the MPI trace collection subcommands described in this
section, you must first specify that you are collecting MPI trace information rather
than hardware profile information. Refer to “Selecting Type of Probe Data To Be
Collected” on page 53 for more information. Once you have indicated that you’ll be
collecting MPI and/or user event traces, you can select the output location for the
trace files generated by the Performance Collection Tool. To do this, you simply
supply an output directory and ″base name″ (file prefix) for the trace files. Refer to
“Setting the Output Location and Other Preferences for the AIX Trace Files
Generated” on page 55 for more information. You can collect information about:

v Standard MPI messaging events such as collective communication, point-to-point
communication, or one-sided communication. This is done by adding MPI data
collecting probes to one or more application task. Refer to “Adding MPI Trace
Probes to Processes” on page 55 for more information.

v Events of interest (such as program function calls). This is done by installing a
simple user marker into one or more application task at an instrumentation point
in the code. Instrumentation points are locations in the code (such as function
call sites) where it is safe to install probes. A simple marker will appear in the
trace record as a single point; its position gives you a frame of reference when
analyzing a trace record in a graphical visualization tool like Jumpshot.

v states of interest. This is done by installing beginning and ending state user
markers in the code at particular instrumentation points. A state will appear in the
trace record as a region and, like the simple markers, gives you a frame of
reference when analyzing a trace record in a graphical visualization tool like
Jumpshot.

Note: The set of tasks in which you will add the probes cannot include different
executables in an MPMD application. For example, if an MPMD application
consists of executables a.out and b.out, then this command cannot be
applied to a task group that contains both a.out and b.out tasks.

IBM Confidential, Limited Rights Data

54 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Setting the Output Location and Other Preferences for the AIX
Trace Files Generated
The trace information collected by the Performance Collection Tool is stored as a
separate AIX trace file on each node running instrumented processes. You can
select the output location and other preferences for the trace files using the trace
set subcommand.

To specify: Use this clause of
the trace set
subcommand:

For example:

The output location and a
″base name″ prefix for the
generated files.

path trace set path "/tracefiles/mytrace"

The AIX trace buffer size in
Kilobytes. (This value can
be at most 1024, which is
the default.)

bufsize trace set bufsize 1000

The type of events (MPI
events or process dispatch
events) that are traced. (By
default, MPI events are
traced.)

event trace set event mpi
trace set event process

The maximum trace file
size in Megabytes. (The
default is 20.)

logsize trace set logsize 25

Adding MPI Trace Probes to Processes
By adding MPI trace probes to processes, you can trace such MPI events as
collective communication, point-to-point communication, and one-sided
communication. To add MPI trace probes, you’ll need to know the specific MPI
probe type identifier or name as returned by the trace show subcommand. To list
the available MPI probe type identifiers and names, specify the probetypes clause
on the trace show subcommand:
> trace show probetypes
MPI Id MPI Name Description
------ ----------- --------------------------------------
0 all all MPI events
1 blkcollcomm blocking collective communication
2 pttopt point-to-point communication
3 onesided one-sided communication
4 commgroup communication groups
5 topo topologies
6 collcomm non-blocking collective communications
7 env environmental
8 data data type
9 file file
10 info information
11 comm communicators
12 wait wait calls
13 test test calls

Once you have the probe type information, you can use the trace add
subcommand to add one or more probe types to one or more processes. You can
add the probes at the file level, in which case the MPI events for the entire file will
be traced, or at the function level. If that granularity is not small enough and you
want to trace only a portion of a function, you can use special markers to force
tracing on and off at particular points.

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 55

By default, the trace add subcommand acts upon the current task group. Unless
you have specified another task group to be the current task group (as described in
“Grouping Tasks of a POE Application” on page 47), the current task group will be
the task group connected. The task group connected is created automatically by the
Performance Collection Tool when you either connect to or load an application (as
described in “Connecting to a Running Application” on page 49 and “Loading Files
for Processing” on page 69). The task group connected consists of all connected
tasks in a POE application. If you are instrumenting a serial application, you do not
need to concern yourself with task groups. If you are instrumenting a POE
application, however, it is useful to understand the concept of task groups as
described in “Grouping Tasks of a POE Application” on page 47.

If you are tracing at the file level, you’ll need to specify the files using either the file
or fileid clause on the trace add subcommand. To do this, you’ll need the file
identifier or file name information as returned by the file subcommand. To list all
available source files in the current task group:
> file "*"
Tid File Id File Name Path
0 0 bar.c ../../lib/src
0 1 foo1.c ../../lib/src
0 2 foo2.c ../src

To add a certain type of MPI probe, you supply the trace add subcommand with
the MPI probe type and file information. You can specify the MPI probe type by
supplying the:

v MPI probe type identifier using the mpiid clause

v MPI probe type name using the mpiname clause

Similarly, you can specify the file information by supplying the:

v file identifier using the fileid clause

v file name using a regular expression

For example:
> trace add mpiid 0 to fileid 0

> trace add mpiname all to file "bar.c"

You can also specify multiple MPI probe types or multiple files:
> trace add mpiid 1,2 to fileid 0,1

> trace add mpiname collcom,pttopt to file "bar.c","f*"

If you would like to trace at a function level rather than tracing an entire file, you
need to specify the function(s) using either the function or funcid clause. You’ll
need the function identifier or function name information as returned by the
function subcommand. To list all functions in the file bar.c:
> function file "bar.c" "*"
Tid File Id Function Id File Name Function Name
0 1 1 bar.c func0
0 1 1 bar.c func1

Note:

IBM Confidential, Limited Rights Data

56 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

If you wish to instrument a particular function, but do not know which file the
function is located in, you can use the find subcommand. For example, to
search all files in task 0 for functions that match the regular expression
comp*:
> find task 0 function "comp*"
Tid File Id File Name Function Name
0 23 main.c compute
0 23 main.c compare
0 25 sort.c compare2

You can then specify the function on the trace add subcommand using either its
identifier or name:
> trace add mpiid 0 to file "bar.c" function "func0"

> trace add mpiid 0 to file "bar.c" funcid 0

You can also specify multiple functions:
> trace add mpiid 0 to file "bar.c" funcid 0,1

> trace add mpiid 0 to file "bar.c" function "*"

> trace add mpiid 0 to file "bar.c" function "func0","func1"

Removing MPI Trace Probes From Processes
When you issue the trace add subcommand to install MPI trace probes, the probes
are given a unique probe index. You can use the probe index on the trace remove
subcommand to remove the probes. To ascertain the probe index, use the trace
show subcommand with its probes clause as in:
> trace show probes
Probe Id Command
-------- --
0 trace add mpiid 0 to file "prod_cons.c" function "alarm_handler"
1 trace add mpiid 0 to file "prod_cons.c" function "consume"

In the example above, the number in brackets is the probe index. To remove the
probe set whose index is 0:
> trace remove probe 0

Adding User Markers to Processes
User markers are special types of probes that you can install at specific
instrumentation points in your application code. You can:

v Mark events of interest (such as program function calls) using a simple marker. A
simple marker will appear in the trace record as a single point; its position gives
you a frame of reference when analyzing the trace record in a graphical
visualization tool like Jumpshot.

v Mark a state of interest using a begin state marker and an end state marker. A
state marked by begin and end state markers will appear in the trace record as a
region. Like the simple markers, this gives you a frame of reference when
analyzing the trace record in a graphical visualization tool like Jumpshot.

v Force tracing on or off using a trace on marker or a trace off marker.

To install a user marker, you’ll need to identify not only the file and function, but
also the instrumentation point at which you want the probe installed. To list
instrumentation points, issue the point subcommand.
> point task 0 file bar.c
Tid File Id Point Id Point Type Callee Name
0 491 0 0

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 57

0 491 1 1
0 491 2 2 g1
0 491 3 3 g1

To: Use: For example:

mark a state
of interest.

the
simplemarker
clause on the
trace add
subcommand.

> trace add simplemarker "simple" to file bar.c funcid 0 pointid 0

mark a
region

the
beginmarker
and endmarker
clauses on the
trace add
subcommand.
You must mark
the beginning
and end of the
range with the
same ″marker
name″ (a string
that will be used
to identify the
user state in the
trace record. You
can only use a
particular name
for one begin
marker/end
marker pair. The
state will appear
in the trace
record as a
region.

> trace add beginmarker "green" to file bar.c funcid 1 pointid 0

> trace add endmarker "green" to file bar.c funcid 1 pointid 1

force tracing
on or off

the traceon or
traceoff clause
on the trace add
subcommand.

> trace add traceoff to file bar.c funcid 0 pointid 0

> trace add traceon to file bar.c funcid 0 pointid 1

Removing User Markers From Processes
When you issue the trace add subcommand to install a custom user marker, the
marker is given a unique marker index. You can use this marker index on the trace
remove subcommand to remove the markers. To ascertain the marker index, use
the trace show subcommand with its markers clause as in:
> trace show markers
[0] 0:0:0:1 beginmarker "green"
[1] 0:0:0:1 simplemarker "simple"
[2] 0:0:0:4 endmarker "green"
[3] 0:0:0:5 traceoff

In the example above, the number in brackets is the marker index. To remove the
marker whose index is 3:
> trace remove marker 3

IBM Confidential, Limited Rights Data

58 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Collecting Hardware and Operating System Profile Information
Using the Performance Collection Tool, you can collect hardware and operating
system profiles for analysis within the Profile Visualization Tool.

The profile information collected is stored in NetCDF (network Common Data Form)
format on each node running instrumented processes. The Profile Visualization Tool
can read NetCDF files and summarize the profile information in reports. For more
information on using the Profile Visualization Tool to read NetCDF files output by
the Performance Collection Tool, refer to “Chapter 3. Using the Profile Visualization
Tool” on page 65.

Before you can use any of the profile collection subcommands described in this
section, you must first specify that you are collecting hardware profile information
rather than MPI and user event traces. Refer to “Selecting Type of Probe Data To
Be Collected” on page 53 for more information. Once you have indicated that you’ll
be collecting hardware profile information, you can select the output location for the
NetCDF files generated by the Performance Collection Tool. To do this, you simply
supply an output directory and ″base name″ (file prefix) for the NetCDF files. Refer
to “Setting the Output Location for the NetCDF Files Generated” for more
information.

Setting the Output Location for the NetCDF Files Generated
The hardware profile information is saved as a separate NetCDF file on each node
running instrumented processes. Using the profile set path subcommand, you can
specify the output location and ″base name″ file prefix for these files. For example:
profile set path "profile/output"

Adding Hardware Profile Probes to Processes
By adding hardware profile probes to processes, you can collect hardware and
operating system information such as elapsed wall-clock time, process resource
usage, and hardware counters. To add hardware profile probes, you need to know
the specific probe type identifier or name as returned by the profile show
subcommand. To list available probe type identifiers and names, specify the
probetypes clause on the profile show subcommand. The list of available probe
types will differ depending on whether the current or supplied task group:

v has tasks running only on 604e CPUs

v has tasks running only on 630 CPUs

v has tasks running on mixed CPUs

For example:
> profile show probetypes
Prof Id Prof Name Description
------- --------- ----------------
0 wclock wall clock
1 rusage resource usage
2 hwcount hardware counter

For hardware counters, you can also display an option list of the specific hardware
counter information you can collect. To list these options, specify the probetype
clause followed by the probe type name on the profile show subcommand:
> profile show probetype hwcount
Prof Type Name Description
--------- -------------------- --------------------
0 FPU operations
1 FXU operations
2 LSU operations
3 Branch operations

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 59

4 L1 cache operations
5 TLB operations
6 Snoop operations
7 Load miss operations
8 Pipeline operations

Once you have the probe type and probe type option information, you can use the
profile add subcommand to add one or more probe types to one or more
processes. You can add the probes at the file level, in which case profile
information for the entire file will be produced, or at the function level.

By default, the profile add subcommand acts upon the current task group. Unless
you have specified another task group to be the current task group (as described in
“Grouping Tasks of a POE Application” on page 47), the current task group will be
the task group connected. The task group connected is created automatically by the
Performance Collection Tool when you either connect to or load an application (as
described in “Connecting to a Running Application” on page 49 and “Loading and
Starting a New Application” on page 48). The task group connected consists of all
connected tasks in a POE application. If you are instrumenting a serial application,
you do not need to concern yourself with task groups. If you are instrumenting a
POE application, however, it is useful to understand the concept of task groups as
described in “Grouping Tasks of a POE Application” on page 47.

Note: The set of tasks in which you will add the probes cannot include different
executables in an MPMD application. For example, if an MPMD application
consists of executables a.out and b.out, then this command cannot be
applied to a task group that contains both a.out and b.out tasks.

If you are collecting profile information at the file level, you’ll need to specify the
files using either the file or fileid clause on the profile add subcommand. To do
this, you’ll need the file identifier or file name information as returned by the file
subcommand. To list all available source files in the current task group:
> file "*"
Tid File Id File Name Path
0 0 bar.c ../../lib/src
0 1 foo1.c ../../lib/src
0 2 foo2.c ../src

To add a certain type of profile probe, you can supply the profile add subcommand
with the profile probe type and option information, as well as the file information.
You can specify:

v the profile probe type by supplying the:

– profile probe type identifier using the profid clause

– profile probe type name using the profname clause

v the hardware profile group using the groupid or groupname clause

v the file information by suppling the:

– file identifier using the fileid clause

– file name using a regular expression

Note: To ascertain the probe type identifier or probe type name to supply to the
profile add subcommand, use the profile show subcommand as described
in “Appendix B. PE Benchmarker Command Reference” on page 115.

For example:

IBM Confidential, Limited Rights Data

60 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

> profile add profname wc to fileid 0

> profile add profid 0 to file "bar.c"

> profile add profname hw groupid 2 to fileid 3

You can also specify multiple profile probe types or multiple files:
> profile add profname wc profname hw groupid 2 to fileid 3,4

If you would like to collect profile information at the function level rather than the
entire file, you’ll need to specify the function(s) using either the function or funcid
clause. You’ll need the function identifier or function name information as returned
by the function subcommand. To list all the functions in the file bar.c:
> function file "bar.c" "*"
Tid File Id Function Id File Name Function Name
0 1 1 bar.c func0
0 1 1 bar.c func1

You can specify the function on the profile add subcommand using its identifier or
name:
> profile add profname wc to file "bar.c" function "func0"

> profile add profname wc to file "bar.c" funcid 0

You can also specify multiple functions:
> profile add profname wc to file "bar.c" funcid 0,1

> profile add profname wc to file "bar.c" function "*"

> profile add profname wc to file "bar.c" function "func0","func1"

Removing Hardware Profile Probes From Processes
When you issue the profile add subcommand to install profile probes, the probes
are given a unique probe index. You can use this probe index on the profile
remove subcommand to remove the probes. To ascertain the probe index, use the
profile show subcommand with its probes clause as in:
> profile show probes
Probe Id Command
-------- ---
0 profile add profid 0 to file "prod_cons.c" function "alarm_handler"
1 profile add profid 0 to file "prod_cons.c" function "consume"

In the example above, the number in brackets is the probe index. To remove the
probe set whose index is 0:
> profile remove probe 0

Terminating Connected Processes
The Performance Collection Tool enables you to terminate execution of connected
processes by issuing the destroy subcommand. You might, for example, wish to
terminate execution of your target application after you have finished examining it.
By default, the destroy subcommand acts upon the current task group. Unless you
have specified another task group to be the current task group (as described in
“Grouping Tasks of a POE Application” on page 47), the current task group will be
the task group connected. The task group connected is created automatically by the
Performance Collection Tool when you either connect to or load an application (as
described in “Connecting to a Running Application” on page 49 and “Loading and
Starting a New Application” on page 48). The task group connected consists of all
connected tasks in a POE application. If you are instrumenting a serial application,

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 61

you do not need to concern yourself with task groups. If you are instrumenting a
POE application, however, it is useful to understand the concept of task groups as
described in “Grouping Tasks of a POE Application” on page 47.

Note: When working with a POE application, be aware that terminating any
process of the application will cause POE to terminate all of the application’s
processes. This termination of all processes is a function of POE, not of the
Performance Collection Tool. For more information, refer to the manual IBM
Parallel Environment for AIX: Operation and Use, Volume 1, Using the
Parallel Operating Environment.

To terminate execution of all tasks in the current task group:
> destroy

To terminate execution of tasks in a specific task group (in this case, the task group
connected), use the group clause on the destroy subcommand.
destroy group connected

To terminate a specific set of tasks in a POE application, use the task clause on the
destroy subcommand. To determine how many tasks are available, you can use
the show group subcommand to list the tasks in the task group all:
> show group all
Tid Program Name Host Cpu Type State
--- -------------------------------------- ---------------- -------- ------
0 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
1 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
2 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
3 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
.
.
.
> destroy task 1,3

You can also, optionally, terminate execution of all connected tasks when exiting the
Performance Collection Tool. To do this, use the exit command (as described in
“Exiting the Performance Collection Tool” on page 63).

Disconnecting From the Application
Once you are through examining a particular application, or particular tasks in an
application, you can disconnect from the application or application tasks by issuing
the disconnect subcommand. Once a process is disconnected, the Performance
Collection Tool will no longer be able to control execution of, or instrument, the
process unless it reconnects to the process. By default, the disconnect
subcommand acts upon the current task group. Unless you have specified another
task group to be the current task group (as described in “Grouping Tasks of a POE
Application” on page 47), the current task group will be the task group connected.
The task group connected is created automatically by the Performance Collection
Tool when you either connect to or load an application (as described in “Connecting
to a Running Application” on page 49 and “Loading and Starting a New Application”
on page 48). The task group connected consists of all connected tasks in a POE
application. If you are instrumenting a serial application, you do not need to concern
yourself with task groups. If you are instrumenting a POE application, however, it is
useful to understand the concept of task groups as described in “Grouping Tasks of
a POE Application” on page 47.

To disconnect all tasks in the current task group:

IBM Confidential, Limited Rights Data

62 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

> disconnect

To disconnect tasks in a specific task group (in this case, the task group
connected), use the group clause on the disconnect subcommand.
disconnect group connected

To disconnect a specific set of tasks in a POE application, use the task clause on
the disconnect subcommand. To determine how many tasks are available, you can
use the show group subcommand to list the tasks in the task group all:
> show group all
Tid Program Name Host Cpu Type State
--- -------------------------------------- ---------------- -------- ------
0 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
1 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
2 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded
3 /home/strofino/dpcltest/WORK/prod_cons pe04.pok.ibm.com Unknown Loaded.
.
.
> disconnect task 1,3

Exiting the Performance Collection Tool
To exit the Performance Collection Tool and return to your AIX command prompt,
issue the exit subcommand:
exit

To terminate execution of all connected processes as you exit the Performance
Collection Tool, include the destroy clause on the exit subcommand.
exit destroy

IBM Confidential, Limited Rights Data

Chapter 2. Using the Performance Collection Tool 63

IBM Confidential, Limited Rights Data

64 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Chapter 3. Using the Profile Visualization Tool

The Profile Visualization Tool is a post-mortem analysis tool. It is designed to
process profile data files generated by the Performance Collection Tool used in
application profiling. For more information on the Performance Collection Tool, refer
to “Chapter 2. Using the Performance Collection Tool” on page 5. After processing
profile data, you can view the results in the Profile Visualization Tool’s graphical
user interface display, outputted to report files, or saved to a summary file. The
Profile Visualization Tool provides a command-line interface to process individual
profile files directly into a summary file without initializing the graphic display. The
command-line interface also enables you to generate textual profile reports. This
chapter begins with a discussion of the Profile Visualization Tool’s graphical user
interface, followed by a description of the command-line interface.

Using the Profile Visualization Tool’s Graphical User Interface
The Profile Visualization Tool provides a graphical user interface that enables you to
process profile data files and view the results. The options available in the graphical
user interface correspond to the commands available in the Profile Visualization
Tool’s command-line interface. For more information on the command-line interface,
refer to “Using the Profile Visualization Tool’s Command Line Interface” on page 88.

Profile Visualization Tool (Graphical User Interface) Overview
The Profile Visualization Tool’s graphical user interface allows you to process and
view profile data. You can load one or more files for processing and view the results
in a variety of ways. After initializing the graphical user interface, you can choose
the appropriate options:

If: Then:

You wish to load files for processing. Select File → Load... .

Doing this opens the Load Files panel. The
Load Files panel will enable you to specify
what files to load into the tool for processing.
You can specify one or more individual
profile files, or a summary profile file. For
more information on the Load option, refer to
“Loading Files for Processing” on page 69.

You wish to control the way profile data is
presented.

Select the View option.

Doing this opens the View menu. The View
menu will enable you to specify how profile
data is presented in the Main Display
window. You can specify how to sort data, as
well as show function call count and
resource usage. For more information on the
View option, refer to “Viewing Profile Data”
on page 70.

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 65

You wish to view selected objects. Select the Object option.

Doing this opens the Object menu. The
Object menu will enable you to view
information such as source code, profile
data, and statistics reports for selected
objects. For more information on the Object
option, refer to “Viewing Selected Objects” on
page 76.

You wish to search for a text string. Select File → Find...

Doing this opens the Find panel. The Find
panel will enable you to specify the text
string for which you want to search. For
more information on the Find option, refer to
“Finding Data” on page 80.

You wish to generate reports of profile data. Select the Report option.

Doing this opens the Report menu. The
Report menu will enable you to select and
view a variety of reports, including function
call count, CPU usage, and memory usage.
For more information on the Report option,
refer to “Generating Reports of Profile Data”
on page 81.

You wish to save summary data to a file. Select File → Save Statistic Summary...

Doing this opens the Save Statistic Summary
panel. This panel will enable you to accept a
user-specified file name. The statistic
summary data of the input profile file or files
will be written to the file. For more
information on the Save Statistic Summary
option, refer to “Saving Summary Data” on
page 84.

You wish to export profile data to a file. Select File → Export...

Doing this opens the Export panel. This
panel will enable you to accept a
user-specified file name. The profile data that
is currently loaded will be written to the file.
For more information on the Export option,
refer to “Exporting Profile Data” on page 86.

You wish to specify certain things that you
would prefer to see as part of the tool.

Select File → Preferences...

Doing this opens the Preferences panel. At
this time, this panel will enable you to access
only one option: source code search paths.
There is a text field available that allows you
to specify where the source code files reside.
For more information on the Preferences
option, refer to “Specifying User Preferences”
on page 87.

IBM Confidential, Limited Rights Data

66 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

You wish to exit the Profile Visualization Tool. Select File → Exit...

Doing this closes the Main Display window
and exits the Profile Visualization Tool. For
more information on the Exit option, refer to
“Exiting the Profile Visualization Tool” on
page 88.

The following sections describe the graphical user interface in greater detail.

Starting the Profile Visualization Tool
You can start the Profile Visualization Tool in either graphical-user-interface (GUI)
mode or command-line mode. For instructions on starting the Profile Visualization
Tool in command-line mode, refer to “Using the Profile Visualization Tool’s
Command Line Interface” on page 88. To start the Profile Visualization Tool in
graphical-user-interface mode:

Enter the pvt command at the AIX command prompt.
$ pvt

Doing this starts the Profile Visualization Tool in graphical-user-interface mode and
opens its first window – the Main Display.

To start the Profile Visualization Tool in graphical-user-interface mode with input
profile data loaded and showing in the Main Display window, enter:
$ pvt one_or_more_file_names

The following figure shows an example of the Main Display window with input
profile data loaded.

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 67

The Main Display window shows a hierarchical list of all the functions being profiled.
The window is divided into two panes, the left one for viewing source code structure
and the right one for viewing profile data. Each pane has a corresponding menu:
the Source View menu and the Data View menu. Both the Source View and Data
View menus are grayed out if no input file is loaded. The two panes share the same
vertical scroll bar and are scrolled together. You can resize the panes horizontally to
change their relative proportion in the Main Display window.

The source code structure pane uses ASCII text to show the identifier of each
displayed object. The profile data pane represents a selected profile data field,
which uses a bar chart to show the profile data associated with each object. The
data value is displayed in front of the bar. When you select an object in the source
code structure pane, an object menu opens that provides some actions associated
with the selected object. You left-click to select an object, and right-click to bring up
the selected object’s object menu. When you select an object, the Object menu in
the Main Display window will become available also, providing the same functions
as the popup object menu.

If you load a summary profile file to start the GUI, process objects are labeled as
summary process object in order to distinguish them from the process objects
available in an individual profile file. Each function object has a set of statistics
records associated with each profile data field.

Following are explanations of the Source View and Data View menus.

Viewing Source Code Structure
The Source View is a drop-down menu with two options: a Thread-Centric View
and a Function-Centric View . The same options are available under the View
drop-down menu in the Main Display window. See “Viewing Profile Data” on
page 70 for more information. If the input file you are loading to start the GUI is a

IBM Confidential, Limited Rights Data

68 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

summary file, there will be no thread information in the file. The structure displayed
will be the same no matter which view is used.

Viewing Selected Profile Data
The Data View is a drop-down menu that enables you to change the type of data to
be shown in the Main Display window. The Data View menu options include the
following categories:

v Function Call Count

v Wall Clock Time

v Resource Usage

v Hardware Counters .

You will find similar options available in the View drop-down menu. See “Viewing
Profile Data” on page 70 for more information. When a particular data type is
unavailable in any of the input data files, its corresponding menu option in the View
menu is grayed out. The Data View drop-down menu only shows the options that
have corresponding values in the input data files. When a set of files is loaded,
Function Call Count is the default field in the Data View menu.

Loading Files for Processing
Using the Load Files panel, you can load one or more individual profile files or a
summary profile file into the tool for processing. To do this:

1. If the Load Files panel is not already open, select the File → Load... menu item
off the Main Display window’s menu bar.

Doing this opens the Load Files panel.

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 69

All files for processing are CDF files (*.cdf*).

2. You can select a file or files to load from the given list, or search for a file using
the appropriate fields.

The Look in field provides a drop-down menu for you to select a directory in which
to search for a file. You can enter the name of the file that you want to load in the
File name field. You can also specify the type of file for which to search by using
the drop-down menu in the Files of type field.

3. After selecting the file or files to load, click on Open . The data is loaded for
processing and the Load Files panel closes. The profile data is shown in the
Main Display window.

When multiple files in the list are selected, only the first file name is shown in the
File name field. If the File name field is then changed, the name in the field is used
as the input file (it is treated as a single file name). If the name does not represent
any existing file, then the highlighted files will be used. If the File name field is
never changed after the file selection, then the highlighted files will be used as input
files.

Once you have loaded the file information, you can choose the way you want to
view the processed data. The following sections describe in detail how to view
profile data.

Viewing Profile Data
Using the View menu, you can specify how profile data is presented in the Main
Display window. The options available with this menu enable you to:

v Change source code hierarchy

v Reveal or hide objects

v Sort data

v Select a variety of other options as appropriate, to show profile data values.

To show the View menu, click on View on the Main Display window’s menu bar.

IBM Confidential, Limited Rights Data

70 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

The following sections describe the View menu options.

Viewing Source Code Hierarchy
You can control how to view source code hierarchy with the first two options in the
View menu: Function-centric View and Thread-centric View . These options are
also available in the Source View drop-down menu in the Main Display window (see
“Viewing Source Code Structure” on page 68). You can select only one of these
options at any given time.

If: Then:

You want to show the source code hierarchy
in the Main Display window so that thread
objects are children of function objects.

Select View → Function-centric View

You want to show the source code hierarchy
in the Main Display window so that thread
objects are children of process objects, and
parents of file objects.

Select View →Thread-centric View

Expanding and Collapsing Objects
You can expand or collapse objects in the Main Display window by using the next
two View menu options: Expand All and Collapse All . When a new set of profile
data files is loaded into the tool, only a root object and process object or objects are
shown in the Main Display window. You can expand all objects in one action, or you
can select an object to expand it. Also, you can collapse all objects in one action, or
select an object to collapse all objects under it. Options for expanding or collapsing
a selected object are also available in the Object menu. Refer to “Viewing Selected
Objects” on page 76 for more information.

If: Then:

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 71

You want to expand objects. If: Then:

You want to expand all
objects.

Select View → Expand All .
This will show all objects,
including file, function, and
thread, if available, in the
Main Display window.

You want to expand a
selected object.

Click on the handle
associated with the object.

You want to collapse objects. If: Then:

You want to collapse all
objects.

Select View → Collapse
All . This will hide all lower
level objects. The root and
process objects will be the
only ones remaining in the
Main Display window.

You want to collapse a
selected object.

Click on the handle
associated with the object.

Note: You can also use the Object menu to expand or collapse selected objects.
Refer to “Viewing Selected Objects” on page 76 for more information.

Sorting Objects
You can sort objects in the Main Display window using the following View menu
options: Sort Alphabetically and Sort by Current Data View .

If: Then:

You want to re-sort objects by their
alphabetic or numeric order.

Select View → Sort Alphabetically . This
option sorts objects in each layer by their
alphabetic or numeric order.

You want to re-sort objects using the current
data view as the key for sorting.

Select View → Sort by Current Data View .
This option re-sorts objects using the current
data view in the bar chart of the Main
Display window as the key for the sorting
operation. Objects in each layer are sorted;
those with larger values are moved to the top
of the layer. Objects of different layers
maintain their relative position. Sorting does
not alter their relative position in the source
hierarchy. After sorting is completed, any
object being expanded or collapsed is
situated according to the sorting key view.
When a new data view is selected for the bar
chart values, the sorting order remains
unchanged. The sorting key used in the last
sorting operation is still used as the measure
to place objects. Only when you select this
option again will objects be re-sorted.

The following options are also available in the Data View drop-down menu in the
Main Display window (see “Viewing Selected Profile Data” on page 69). You can
select only one of them at any given time. The item you select becomes the
criterion used to construct the bar chart in the Main Display window. Since not
every profile data file contains all the possible profile data types, an option that
does not belong to any object in the loaded profile data will be grayed out in the
View menu, and will not be included in the Data View drop-down menu.

IBM Confidential, Limited Rights Data

72 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Note: Regardless of which data field is selected, the leaf nodes in the source code
tree will have runtime performance data associated with them. A leaf node is
one that cannot be further expanded. Other intermediate nodes (that is,
nodes that can be expanded) will have the roll-up data of their child nodes.
The only exceptions are the following fields:

v Maximum Resident Memory Size — the maximum value among child
nodes will be used.

v Instructions Per Cycle — each instructions per cycle value will be
re-calculated at each intermediate layer.

Viewing Function Call Count
When you select the Function Call Count option, function call count values are
used to construct the bar chart in the Main Display window.

Selecting Wall Clock Time
When you select the Wall clock time option, elapsed wall clock time values are
used to construct the bar chart in the Main Display window.

Selecting Resource Usage Options
When you select the Resource Usage option, a secondary drop-down menu
opens. You can select only one option at a time from this secondary list.

Note: The secondary menu is available only as part of the View menu. The Data
View drop-down menu does not support the secondary list.

The following list shows the options available from the Resource Usage menu:

v User CPU Usage

v System CPU Usage

v Maximum Resident Memory Size

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 73

v Page Fault Without I/O

v Page Fault With I/O

v Voluntary Context Switch

v Involuntary Context Switch .

Viewing Hardware Counters
When you select the Hardware Counters option, a secondary drop-down menu
opens showing a list of supported hardware counter groups. Under each group that
you select, there is a list of hardware counter events from which to choose.

Note: The secondary menu is available only as part of the View menu. The Data
View drop-down menu does not support the secondary list.

When you select a hardware counter event, it becomes the value used in
constructing the bar chart in the Main Display window. Under the View menu, only
the hardware counter options that have corresponding values in the profile data are
activated; all the rest are grayed out. The following list shows the options available
from the Hardware Counters menu, and their corresponding hardware counter
events:

v Instructions Per Cycle

– Floating-Point Instructions Per Cycle

– Fixed-Point Instructions Per Cycle

– Branch Instructions Per Cycle

– Load Instructions Per Cycle

– Store Instructions Per Cycle.

v Floating-Point Operations

– FPU0 (Floating-Point Unit 0) Produced Result

IBM Confidential, Limited Rights Data

74 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

– FPU1 (Floating-Point Unit 1) Produced Result

– FPU Divide Executed

– FPU Multiply-Add Executed

– FPU Add, Subtract, or Multiply Executed

– FPU FSQRT Executed

– FPU FCMP Executed

– FPU (Floating-Point Unit) Produced Result (604e).

v Fixed-Point Operations

– FXU0 (Fixed-Point Unit 0) Produced Result

– FXU1 (Fixed-Point Unit 1) Produced Result

– FXU2 (Fixed-Point Unit 2) Produced Result

– FXU (Fixed-Point Unit) Produced Result (604e).

v Branch Operations

– BPU (Branch Unit) Produced Result

– A Conditional Branch Was Predicted

– Global Cancel Due To A Branch Guessed Wrong

– BPU (Branch Unit) Produced Result (604e)

– Branch Misprediction Correction From Execute Stage (604e).

v Load and Store Operations

– Number Of Load Instructions Completed

– Number Of Store Instructions Completed

– Number Of Cycles Load Stalled Due To Interleave Conflict

– Number Of Load Instructions Completed (604e)

– LSU (Load And Store Unit) Produced Result (604e)

– Number Of Cycles A Load Miss Took (604e).

v Cache Operations

– L1 I-cache Miss

– A Load Miss Occurred In L1

– A Store Miss Occurred In L1

– TLB Miss, Included Both D-cache And I-cache Miss

– Snoop Hit Occurred And L2 Had The Valid Block

– Number of D-cache Prefetch Blocked Due To Four Streams

– Number of D-cache Prefetched And Used

– RWITH Caused L2 Miss

– Burst Read Caused L2 Miss

– Instruction Cache Miss (604e)

– Data Cache Miss (604e)

– Instruction TLB Miss (604e)

– Data TLB Miss (604e)

– Valid Snoop Request Received (604e)

– Number of Snoop Hits Occurred (604e).

v Miscellaneous Operations

– Processor Clock Cycles

– Processor Clock Cycles (604e)

– Number Of Pipeline Flushing Instructions (604e).

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 75

Along with the ability to view how data is presented, you can also view specific data
about selected objects. The following sections describe how to view these selected
objects.

Viewing Selected Objects
You can view information about objects you select using the Object menu. The
functions available with this menu only apply to the selected objects and, in some
cases, their child objects. The Object menu enables you to view the following
information:

v Source code

v Profile data

v Statistics reports

v Process IDs.

In addition, the Object menu has expand and collapse options that allow you to
show or hide the child objects of a selected object.

To show the Object menu, first select an object, then click on Object on the Main
Display window’s menu bar. The object menu is grayed out until an object is
selected.

The Object menu also appears as a pop-up menu for a selected object in the Main
Display window. Left-clicking on an object in the source code structure section of
the Main Display window will select the object, then right-clicking will open the
Object menu.

The following sections describe the Object menu options.

IBM Confidential, Limited Rights Data

76 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Viewing Selected Source Code
You can view the source code of a selected object using the Source Code Browser.
To open the Source Code Browser select Object → Show Selected Source Code .

When you choose to view a selected object’s source code, the Source Code
Browser is used to display the source code. If the object you select is not a file of
function object, the Show Selected Source Code option is grayed out. If the source
code file cannot be found, an error message panel opens to report the missing file.
The Source Code Browser has a File menu that provides one option, Close , that is
used to close down the browser.

Note: You can select File → Preferences from the Main Display window menu bar
to specify the location of a source code file. Refer to “Specifying User
Preferences” on page 87 for more information.

Viewing Selected Profile Data
You can view the profile data of a selected object. The profile data is shown in the
Profile Data window. To open the Profile Data window select Object → Show
Selected Profile Data .

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 77

Process objects have their own runtime profile data, which is collected by profile
probes inserted in a running application by the Performance Collection Tool (refer to
“Chapter 2. Using the Performance Collection Tool” on page 5 for more information).
Each process object represents a profile session. There are two sets of data
associated with each process object. One set is the profile-session data collected
at runtime. The other set is the summary of each process’ child objects’ profile data,
that is, the function-summation data . Other objects contain summary data of their
child objects’ profile data.

The Profile Data window for a process object includes both the profile-session data
and function-summation data associated with each process object.

Viewing Selected Statistics Reports
You can view a statistics report on a selected function object. To do this select
Object → Show Selected Statistics Report . This opens the Function Statistics
Report window.

IBM Confidential, Limited Rights Data

78 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

The Show Selected Statistics Report option is only applied to function objects. It is
grayed out unless a function object is currently selected.

The Function Statistics Report includes the following profile data:

v Function Call Count

v Wall Clock Time

v User CPU Time

v System CPU Time

v Maximum Resident Set Size

v Page Faults Without I/O

v Page Faults With I/O

v Voluntary Context Switch

v Involuntary Context Switch

v A Hardware Counter Group – which will be a maximum of four (4) rows for 604e
CPU architecture, or eight (8) rows for 630 CPU architecture. Each row
represents a counter event, for example: L1 I-cache miss.

For each row, there are columns to show the corresponding statistics data. The
columns from left to right are:

v Selected object – the selected function object’s own profile data value.

v Summary – the summary value of the corresponding function objects in input
profile data. Basically these function objects have the same file name, function
name, profile options, and ran on the same type of CPU architecture.

v Mean – the average value of the corresponding function objects.

v Standard deviation – the standard deviation value of the corresponding function
objects.

v Maximum – the maximum value among the corresponding function objects.

v Maximum id – the task id of the process that has the maximum value.

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 79

v Minimum – the minimum value among the corresponding function objects.

v Minimum id – the task id of the process that has the minimum value.

The Function Statistics Report window shows the name of the function. The window
has a File menu with two options: Save and Close .

When you save a report, it is saved to a file in plain text format. The title row is
saved as the first line in the file. Each row is ended with an end-of-line symbol “\n”,
and blank spaces are used as field delimiters to separate data in the same row.

Viewing Selected Process IDs
You can view the process IDs that are included in a summary file by selecting
Object → Show Selected Process IDs . This opens the Process IDs window.

The Show Selected Process IDs option is available only for the summary process
objects in a summary file. This option provides the information of how many, and
which, individual profile files are used to create a summary file.

Expanding and Collapsing a Selected Object
You can expand or collapse a selected object to show or hide its child objects. To
expand a selected object, select Object → Expand Selected Object . This will show
the immediate child objects of the selected object. To collapse a selected object,
select Object → Collapse Selected Object . This will hide all the immediate and
distant child objects of the selected object. If the selected object cannot be
expanded or collapsed, either option will be grayed out.

Finding Data
You can specify a text string to search for and find data by using the Find option.
Select File → Find... to open the Find panel.

IBM Confidential, Limited Rights Data

80 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

The Find panel provides a text field to enter the string for which you want to search.
Click on Find to start the search. The first object in the Main Display window that
matches the specified string will be highlighted. The Find panel also provides the
Find Backwards button to support backward search (the default is forward search).
If you de-select the Case Sensitive button, the string search is conducted in a case
insensitive manner. The search scans through the entire data set, whether or not an
object is currently in the Main Display window. A hidden object that matches the
search criterion will be made visible in the Main Display window. The Find panel
stays open until you select the Close button.

Generating Reports of Profile Data
You can generate textual reports of profile data by using the Report menu. To open
this menu select Report .

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 81

The reports you select from the menu will be displayed in report windows, unless
you want to select multiple reports. In this case, the Report menu allows you to
specify whether a selected report goes to a file or a report window. For multiple
reports select Report → Select Multiple Reports... . This opens the Select Multiple
Reports panel.

From this panel you can specify what textual reports you would like to view. You
can also specify if you want the selected reports displayed in report windows, or if
you want the reports written to a file. If you want the reports written to a file, you
need to provide a file name for output.

IBM Confidential, Limited Rights Data

82 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

When you choose one of the other options available in the Report menu, a textual
report window opens showing the appropriate data for the profiled application. For
example, the following figure shows an example of a textual report for User CPU
Usage.

The following list shows the other options available in the Report menu.

Note: For a complete list of the reports available for each group, refer to “Viewing
Hardware Counters” on page 74.

v Function Call Count Report

v Wall Clock Timer Report

v CPU Usage Reports

– User CPU Time

– System CPU Time.

v Memory Usage Report

v Paging Activities Reports

– Page Faults Without I/O

– Page Faults With I/O.

v Context Switch Activities Reports

– Voluntary Context Switch

– Involuntary Context Switch.

v Instructions Per Cycle Hardware Counter Reports

– Floating-Point Instructions Per Cycle

– Fixed-Point Instructions Per Cycle

– Branch Instructions Per Cycle

– Load Instructions Per Cycle

– Store Instructions Per Cycle.

v Floating-Point Hardware Counter Reports

– Floating-point operations – each report represents a floating-point data type.

v Fixed-Point Hardware Counter Reports

– Fixed-point operations – each report represents a fixed-point data type.

v Branch Hardware Counter Reports

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 83

– Branch operations – each report represents a branch data type.

v Load and Store Hardware Counter Reports

– Load and store operations – each report represents a load or store data type.

v Cache Hardware Counter Reports

– Cache operations, including L 1/2 cache, TLB, snoop,etc. – each report
represents a cache data type.

v Miscellaneous Hardware Counter Reports

– Counter events not included in any other counter report groups – each report
represents a data type.

Each row in the reports represents a function object being profiled. Since a function
can be profiled with different options in different profile sessions, there can be one
function object for each profile session. In other words, there can be multiple rows
with the same function name; each row having different profile options. The first
column in each row contains a function name. The rows are sorted by the summary
value of each function object’s statistics data. Following is a list of the columns in
each report, in left to right order:

v Function name – the name of each function object.

v Summary – the summary value of the function’s corresponding values in all
profile data files.

v Mean – the average value of the function’s corresponding values in all profile
data files.

v Standard deviation – the standard deviation value of the function’s corresponding
values in all profile data files.

v Maximum value – the maximum value of the function’s corresponding values in
all profile data files.

v Maximum id – the task id of the process that has the maximum value.

v Minimum value – the minimum value of the function’s corresponding values in all
profile data files.

v Minimum id – the task id of the process that has the minimum value.

v File name – the name of the source code file that contains this function.

Like the Function Statistics Report window, each textual report type has a File
menu. Refer to “Viewing Selected Statistics Reports” on page 78 for more
information. There is a Find option in the File menu. The Find option acts the same
here as it does in the Main Display window’s File menu. Refer to “Finding Data” on
page 80 for more information. In the Textual Report window, the Find option is used
to search for a function name in the report. When there is a matched function
name, the matched row is highlighted and brought to the center of the display
window.

Saving Summary Data
You can save the statistic summary data of a profile file. Select File → Save
Statistic Summary... to open the Save Statistic Summary File panel.

IBM Confidential, Limited Rights Data

84 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

From this panel you can specify a file name to which the statistic summary data of
the input profile file is written.

When individual profile files are merged and summarized to create a summary
profile file, some of the data that exists in individual files is lost in the merging
process. For example, there is no thread related data, and you can no longer link a
summary function record to its corresponding process object (each process object
represents a profile session). This is because thread ids and profile session ids are
not consistent across processes. Each process can assign a different id for the
same part of code in a program. During the merge process, records that have the
following same information are merged together:

v CPU type

v File name

v Function name

v Profile option.

Then the following statistics records are generated:

v Summary record

v Average record

v Max value record

v Max id record (a task id indicating which task has the max value)

v Min value record

v Min id record.

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 85

Each individual profile file has one profile-session record and one
function-summation record for each profile session. The records are copied over to
the newly created summary profile file. The summary file uses .cdf as its file name
suffix.

Exporting Profile Data
You can export profile data by selecting File → Export... . The Export option will
open a file selection panel that accepts a user-specified file name.

The currently loaded profile data is written to the user-specified file in plain text
format, so the data can be loaded easily into a spreadsheet tool, like Lotus 1-2-3.

The export file contains descriptions of the hardware counter events used in the file.
It also contains information about each profile session, for example, pid, task id,
machine hostname, IP address, CPU type, and OS level. If the input file is a
summary file, then the fields mentioned above all have value “N/A”. If the records
belong to one profile session, each of them represents a thread’s profile data. If the
input file is a summary file, then each record represents the summary of thread
activities within a function.

Each record in an export file contains the following information:

v Record type

v Task id

v Pid

v CPU type

v File name

IBM Confidential, Limited Rights Data

86 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

v Function name

v Thread id

v Profile option

v Call count

v Wall clock

v User CPU

v System CPU

v Max memory size

v Page fault without I/O

v Page fault with I/O

v Voluntary context switch

v Involuntary context switch

v Counter event id [8]

v Counter event value [8].

The “counter event id” field and “counter event value” field are arrays with eight
entries each. Each entry represents a hardware couter event being profiled and its
value, respectively. The word “N/A” is assigned to any “counter event value” entry
that is not used during the performance profiling phase.

For each profile session, there is one record that represents the profile session data
associated with the session. The record has the same format as other records, but
both its file name field and function name field have the value “N/A”.

When you open the Export file selection panel, you are prompted to enter an output
file name. All the data available in input profile files is exported. Comment records
that start with a number sign (#) are added to the output file to describe what type
of data is stored in the file, the runtime environment, and the record format used in
the export file. Each record is delimited by an end-of-line symbol (\n), and the fields
in each record are separated by semicolon symbols (;). All records have an equal
number of fields. Any field that has no meaning in a particular record type is
assigned the value “N/A”. The export file uses .txt as its file name suffix.

Specifying User Preferences
There is one user preference you can specify: where source code files reside.
Select File → Preferences... to open the Preferences panel.

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 87

You can enter the appropriate source code search path in the text field. The Source
Code Browser looks for source code files at the specified locations, in addition to
the default locations. You can also use this option to change source file search
order. You can specify to search default location first, last, or in between two file
paths.

The text field for the source code search path is a multi-line text field. Each line
represents a specified path. If you select the option “use a file’s base name only”,
the base name of a file to be searched will be appended to each specified path and
searched in that order. If you de-select the option, then a file’s full name (that is,
path, if any, plus the base name) will be appended to each specified path, and the
combining string will be used in locating the file.

Exiting the Profile Visualization Tool
To exit the Profile Visualization Tool, select File → Exit . This will stop Profile
Visualization processing, and close the Main Display window and any panels or
menus that are open.

Using the Profile Visualization Tool’s Command Line Interface
The Profile Visualization Tool provides a command-line interface that enables you to
process profile files directly without initializing the graphical user interface. The
subcommands available in the command-line interface correspond to the options
available in the graphical user interface. For more information on the graphical user
interface, refer to “Using the Profile Visualization Tool’s Graphical User Interface” on
page 65.

Profile Visualization Tool (Command Line Interface) Overview
The Profile Visualization Tool’s command-line interface allows you to process profile
data directly without using the graphical user interface. After initializing the
command-line interface, you can enter the appropriate subcommands that enable
you to:

IBM Confidential, Limited Rights Data

88 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

v Load files for processing

v Create a summary file of all the loaded data

v Generate textual reports of profile data

v Export profile data to a file.

The following sections describe the command-line interface in greater detail.

Starting the Profile Visualization Tool in Command-Line Mode
To start the Profile Visualization Tool in command-line mode, enter:
pvt -cmd

Doing this starts a command-line session without associated profile data. To start a
command-line session with associated profile data, enter:
pvt -cmd one_or_more_file_names

Once you start a command-line session, the command line prompt changes to pvt>
and remains this way until you enter the exit command to end the command-line
session.

The following sections describe the command-line mode subcommands.

Loading Files
You can load a set of profile data files into the session with the load command.
Enter:
load one_or_more_file_names

If a set of data already exists, then the existing data is discarded and the newly
loaded data becomes the current data to be used in future actions.

Creating a Summary File
You can create a summary file of all the loaded data with the sum command. Enter:
sum summary_file_name

The merged summary data is written to the file that you specify in the command,
with a suffix of .cdf being appended to the specified file name.

Generating Reports
You can generate textual reports of profile data using the report command. You can
specify several different options with the report command, depending on what type
of output you want. To show a list of available report types, enter:
report list

The result will look something like:

v [0] call_count: function call count report

v [1] wclock: wall clock timer report

v [2] ru_cpu: CPU usage reports

v [3] ru_mem: memory usage report

v [4] ru_paging: paging activities reports

v [5] ru_cswitch: context switch activities reports

v [6] pmc_cycle: instructions per cycle hardware counter reports

v [7] pmc_fpu: floating-point hardware counter reports

IBM Confidential, Limited Rights Data

Chapter 3. Using the Profile Visualization Tool 89

v [8] pmc_fxu: fixed-point hardware counter reports

v [9] pmc_branch: branch hardware counter reports

v [10] pmc_lsu: load and store hardware counter reports

v [11] pmc_cache: cache hardware counter reports

v [12] pmc_misc: miscellaneous hardware counter reports

For details of these reports, refer to “Generating Reports of Profile Data” on
page 81.

To generate all the available reports to a file, enter:
report output_file_name

To generate reports by report name to a file, enter:
report "one_or_more_report_names" output_file_name

For example:
report "wclock,ru_cpu" output

To generate reports by report id to a file, enter:
report "one_or_more_report_ids" output_file_name

For example:
report "1,2" output

The report names or report ids in double quotes must be separated by a comma,
with no blank space in between. No matter how many reports are selected in one
report command, all the reports are outputted to a single file specified in the report
command.

Exporting Files
You can export profile data to a specified file using the export command. Enter:
export output_file_name

A suffix .txt will be appended to the specified file name.

The currently loaded profile data is written to the user-specified file in plain text
format, so the data can be loaded easily into a spreadsheet tool like Lotus 1-2-3.
The data that is loaded into the tool can be grouped into the following types of
records:

v Profile-session record associated with each process (that is, profile session)

v Individual function or thread records

v Function statistics records.

For more information on exporting data, refer to “Exporting Profile Data” on
page 86.

Exiting the Profile Visualization Tool
You can end a command-line session with the exit command. Enter:
exit

IBM Confidential, Limited Rights Data

90 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Chapter 4. Creating, Converting, and Viewing Information
Contained In, UTE Interval Files

When you collect MPI and user event traces using the Performance Collection Tool
(as described in “Chapter 2. Using the Performance Collection Tool” on page 5), the
collected information is saved, on each machine running instrumented processes,
as a standard AIX event trace file. In order to view the information contained in
these standard AIX trace files, you will first need to convert them into UTE (Unified
Trace Environment) interval files. While an AIX event trace file has a time stamp
indicating the point in time when an event occurred, UTE interval files take this
information to also determine how long an event lasts. Because they include this
duration information, UTE interval files are easier to visualize than traditional AIX
event trace files. The UTE utilities are:

v The convert utility which coverts AIX event trace files into UTE interval trace
files.

v The utemerge utility which merges multiple UTE interval files into a single UTE
interval file.

v The utestats utility which generates statistics tables from UTE interval files.

v The slogmerge utility which converts and merges UTE interval files into a single
SLOG file for analysis within Argonne National Laboratory’s Jumpshot tool.

The preceding figure illustrates the UTE utilities you can use to either generate
statistics tables from UTE interval files or view statistics graphically using Argonne
National Laboratory’s Jumpshot tool. Regardless of whether you want to view the
statistics in simple tables or graphically in Jumpshot, the first thing you’ll need to do
is use the convert utility to create UTE interval files from the AIX trace files («a¬).
(See “Converting AIX Trace Files Into UTE Interval Trace Files” on page 92 for more

AIX Trace

Files

UTE Interval

Files

convert

convert

convert

convert

convert

convert

UTE Interval

Files

utestats

utestats

utestats
utemerge

Merged

UTE

File

UTE Interval

Files

slogmerge

slogmerge

slogmerge
Merged

SLOG

File

SLOG

Files

Statistics Tables Generated

By utestats Utility

Jumpshot

(Note: Jumpshot is a public domain tool

developed by Argonne National Laboratory,

and is NOT part of the PE Benchmarker Toolset)

a

b

c

Figure 2. Unified Trace Environment (UTE) Utilities

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 91

information.) Then, if you want to view the statistics in simple tables («b¬), you can
use the utestats utility. You can optionally merge multiple UTE files into a single
UTE file using the utemerge utility before using the utestats utility to generate the
statistics tables. (See “Generating Statistics Tables From UTE Interval Trace Files”
on page 93 for more information.) If you instead want to view the information
contained in the UTE interval files graphically («c¬), you can convert them into
SLOG files using the slogmerge utility. The slogmerge utility can either convert a
single UTE interval file into a single SLOG file, or it can merge multiple UTE interval
files into a single SLOG file. The SLOG files are readable by Argonne National
Laboratory’s Jumpshot Tool. (See “Converting UTE Interval Files Into SLOG Files
Required By Argonne National Laboratory’s Jumpshot Tool” on page 94 for more
information.)

Note: The UTE utilities are intended only for the AIX event trace files generated
when you collect MPI and user event traces with the Performance Collection
Tool. If you instead collect hardware and operating system profiles, the
information is output by the Performance Collection Tool as NetCDF (network
Common Data Form) files and these UTE utilities are not necessary. Instead,
the NetCDF files can be read directly into the Performance Collection Tool as
described in “Chapter 3. Using the Profile Visualization Tool” on page 65.

The following sections provide an overview of the UTE utilities. Note, however, that
this section does not attempt to describe all the options available when using these
utilities. For complete reference information on any of the utilities described in this
section, refer to their man pages contained in “Appendix B. PE Benchmarker
Command Reference” on page 115.

Converting AIX Trace Files Into UTE Interval Trace Files
Regardless of whether you want to view the statistics you have collected in simple
tables, or graphically in Jumpshot, the first thing you’ll need to do is use the
convert utility to create UTE interval files from the AIX trace files generated by the
Performance Collection Tool. When you collect MPI and user event traces, the
collected information is saved, on each machine running instrumented processes,
as a standard AIX event trace file. The names of these individual trace files will
consist of a common ″base name″ that you specified using the Performance
Collection Tool, followed by a node-specifiic suffix supplied by the tool itself. Using
the convert utility, you can convert either a single AIX trace file into a UTE interval
file, or a set of AIX trace files with the same prefix into a set of UTE interval files.

To convert a single AIX trace file into a UTE interval file, simply pass the convert
utility the name of the trace file located in the current directory. For example, to
convert the AIX trace file mytrace into a UTE interval trace file, enter:
convert mytrace

Using the -o flag, you can optionally specify the name of the output UTE interval
file. For example, to specify that the output file should be named outute.
convert -o outute mytrace

To convert a set of AIX trace files into a set of UTE interval files, simply specify the
number of files using the -n option, and supply the common ″base name″ prefix
shared by the files. For example, to convert five trace files with the prefix mytraces
into UTE interval files, copy the trace files to a common directory and enter:
convert -n 5 mytraces

IBM Confidential, Limited Rights Data

92 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

You can optionally use the –o option to specify a file name prefix for the resulting
UTE interval files.
convert -n 5 -o outute mytraces

For complete reference information on the convert utility, refer to its man page in
“Appendix B. PE Benchmarker Command Reference” on page 115. If you want to
view the statistics information contained in the UTE file(s) in simple tables, refer to
“Generating Statistics Tables From UTE Interval Trace Files”. If you want to view
the statistics information contained in the UTE file(s) graphically, refer to
“Converting UTE Interval Files Into SLOG Files Required By Argonne National
Laboratory’s Jumpshot Tool” on page 94.

Generating Statistics Tables From UTE Interval Trace Files
Once you have created UTE interval trace files (as described in “Converting AIX
Trace Files Into UTE Interval Trace Files” on page 92), you can generate statistical
tables from them using the utestats utility. By default, six two-dimensional tables
are generated. These tables are:

v Time Bin vs. Node

v Thread vs. Event Type

v Event Type vs. Thread

v Node vs. Event Type

v Event Type vs. Node

v Node vs. Processor

The computed statistic for all tables is the sum or the duration. A Node vs.
Processor table would look like the following (where tabs have been replaced by
spaces to make the column alignment clearer).
node/cpu 0 1

0 2.823739 2.258315
1 0.873746 4.241253
2 0.956515 4.322891
3 0.853188 4.334650

You can generate these statistics tables for a single UTE interval file or multiple
UTE interval files. You can also generate these statistics tables for a merged UTE
interval file. A merged UTE interval file is one that consists of multiple UTE interval
files that have been merged into one file by the utemerge utility.

For example, to generate the statistics tables for the UTE interval file mytrace.ute,
you would enter:
utestats mytrace.ute

By default, the statistics tables will be printed to standard output. You can, however,
redirect them to a file using the -o option on the utestats command. For example,
to redirect the statistics tables output by the utestats utility to the file stattables, you
would enter:
utestats -o stattables mytrace.ute

As already stated, you can also specify multiple UTE interval files from which the
statistics should be generated.
utestats mytrace.ute mytrace2.ute mytrace3.ute

IBM Confidential, Limited Rights Data

Chapter 4. Creating, Converting, and Viewing Information Contained In, UTE Interval Files 93

Rather than specify multiple UTE interval trace file names on the utestats
command, you could instead use the utemerge utility to first merge the multiple
UTE interval trace files into a single UTE interval trace file. To do this, you use the
-n option on the utemerge command to indicate the number of files you want to
merge, and supply the common ″base name″ prefix shared by the files. For
example:
utemerge -n 3 mytrace

The merged UTE interval file generated by the utemerge utility will, by default, be
named trcfile.ute. To specify your own output file name, use the -o option.
utemerge -n 3 -o mergedtrc.ute mytrace

You can then generate statistics for the merged UTE interval file using the utestats
command.
utestats mergedtrc.ute

For complete reference information on the utestats and utemerge utilities, refer to
their man pages in “Appendix B. PE Benchmarker Command Reference” on
page 115.

Note: Argonne National Laboratory’s Jumpshot Tool also includes a statistics view
feature that displays the same information as the utestats command.
Jumpshot also has the ability to display statistics information graphically. The
Jumpshot Tool is described next in “Converting UTE Interval Files Into SLOG
Files Required By Argonne National Laboratory’s Jumpshot Tool”.

Converting UTE Interval Files Into SLOG Files Required By Argonne
National Laboratory’s Jumpshot Tool

If you would like to view the traces collected by the Performance Collection Tool
graphically, you can use the Jumpshot tool developed by Argonne National
Laboratory. While Jumpshot is a public domain tool and not part of the PE
Benchmarker Toolset, we do provide a utility — slogmerge — for converting UTE
interval files into the SLOG files required by Jumpshot. You can use the slogmerge
utility to:

v convert a single UTE interval file into a single SLOG file.

v merge multiple UTE interval files into a single SLOG file.

If you are dealing with a massively parallel job, it is unlikely that you will be able to
display all the process threads in Jumpshot. Rather than merge all the trace files
generated from such a job, you will instead want to merge selected trace files. To
determine which files to merge, you can first use the utestats utility (as described
in “Generating Statistics Tables From UTE Interval Trace Files” on page 93) to
determine the characteristics of the files.

To convert a single UTE interval file into a single SLOG file, pass the slogmerge
command the name of the file located in the current directory. For example:
slogmerge mytrace.ute

By default, the SLOG file output by the slogmerge utility will be trcfile.slog. Using
the -o option on the slogmerge command, however, you can specify an output file
name. For example:
slogmerge -o mergedtrc.slog mytrace.ute

IBM Confidential, Limited Rights Data

94 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

To merge multiple UTE interval files into a single SLOG file, use the -n option to
indicate the number of files to merge and pass the slogmerge utility the common
″base name″ prefix of the files. For example, to merge 3 files whose prefix is
mytrace, enter:
slogmerge -n 3 mergedtrc.slog mytrace

For complete reference information on the slogmerge utility, refer to its man page
in “Appendix B. PE Benchmarker Command Reference” on page 115.

IBM Confidential, Limited Rights Data

Chapter 4. Creating, Converting, and Viewing Information Contained In, UTE Interval Files 95

IBM Confidential, Limited Rights Data

96 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Appendix A. Dynamic Probe Class Library (DPCL)
Enhancements

This appendix summarizes the enhancements we’ve made to the Dynamic Probe
Class Library to enable the Performance Collection Tool, which is built on DPCL, to
search for functions in a target application’s source code. These enhancements
include:

v some additional functions added to the SourceObj class. Objects of the
SourceObj class (which is defined in the header file SourceObj.h) are called
″source objects″ and are used by the DPCL system to represent the source code
structure associated with a target application. Two new functions added to this
class enable the analysis tool to get, for a particular process, a list of function
names that match a regular expression you supply. This function list is returned
as an object of class FunctionList (described below).

v a new class — the FunctionList class — used to represent a list of functions.

v a new class — the FunctionId class — used to represent a single entry in a
FunctionList object’s list of functions.

The information in this appendix is designed to supplement the reference
information already contained in the IBM Parallel Environment for AIX: DPCL Class
Reference. If you are new to DPCL, and would like an overview of this class library,
refer to the IBM Parallel Environment for AIX: DPCL Programming Guide.

New Functions of Class SourceObj
In order to enable an analysis tool (specifically our Performance Collection Tool
which is built on the DPCL) to search an application’s source code for functions that
match a particular regular expression pattern, several new functions have been
added to the SourceObj class. These new functions are summarized in the
following AIX man pages.

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 97

bget_function_list

Synopsis
#include <SourceObj.h>
FunctionList *bget_function_list(

const Process &proc,
char *regexp,
AisStatus *sts);

Parameters
proc

process to which the bget_function_list request applies

regexp
regular expression that represents the pattern to be matched when searching
for functions within the process specified by the proc parameter.

sts
AisStatus that indicates the success or failure of the blocking call

Description
Sends a request to the server to get, for a particular process, a list of function
names that match a regular expression you supply.

Return Values
FunctionList

Returns a list of functions (an object of class FunctionList) that match the
supplied regular expression for the given process.

See Also
get_function_list

bget_function_list IBM Confidential, Limited Rights Data

98 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

get_function_list

Synopsis
#include <SourceObj.h>
AisStatus get_function_list(

const Process &proc,
char *regexp,
GCBFuncType fp,
GCBTagType tag);

Parameters
proc

process to which the get_function_list request applies

regexp
regular expression that represents the pattern to be matched when searching
for functions within the process specified by the proc parameter.

fp callback function to be invoked when this operation succeeds or fails

tag
callback tag to be used when the callback function is invoked

Description
Sends a request to the server to get, for a particular process, a list of function
names that match a regular expression you supply.

Note that the get_function_list function immediately returns control to the caller
upon issuing the request to get the function list. The return value indicates only
whether the request was successfully submitted.

Callback Data
The callback function is passed a pointer to the FunctionList object (containing the
list of function names that match the supplied regular expression for the specified
process) as the callback object. The callback message is the request status, of type
AisStatus , which contains one of the following values:

ASC_success
get function list operation was successful

ASC_operation_failed
get function list operation was unsuccessful

Return Values
The return value for the get_function_list function indicates whether the request
was successfully submitted.

ASC_success
Request was submitted successfully.

ASC_operation_failed
request was not submitted.

See Also
bget_function_list

get_function_listIBM Confidential, Limited Rights Data

Appendix A. Dynamic Probe Class Library (DPCL) Enhancements 99

Class FunctionId
Class FunctionId contains a single entry in a function list (as returned by the
FunctionList::get_entry function). The FunctionId object returned contains a
string representation of the function name, its mangled name, and its associated
source file name.

get_function_list IBM Confidential, Limited Rights Data

100 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Constructors

Synopsis
#include <FunctionId.h>
FunctionId(void);
FunctionId(const char *source_name, const char *function_name,

const char *mangled_name);
FunctionId(const FunctionId &oldobj);

Parameters
source_name

source file name of the function

function_name
name of the function

mangled_name
mangled name of the function

oldobj
object to be copied into the new FunctionId object.

Description
The default constructor creates an empty FunctionId object.

The standard constructor uses the arguments provided to initialize the object.

The copy constructor uses the values contained in the oldobj to initialize the new
(constructed) object.

The constructors provided with this class will return a value of NULL if they are
invalid.

Exceptions
ASC_insufficient_memory

a memory allocation routine failed.

See Also
class FunctionList

ConstructorsIBM Confidential, Limited Rights Data

Appendix A. Dynamic Probe Class Library (DPCL) Enhancements 101

get_demangled_name

Synopsis
#include <FunctionId.h>
char *get_demangled_name(char *buf, unsigned int len) const;

Parameters
buf

caller-allocated buffer that holds the demangled name

len
maximum number of bytes the function will place in the buffer. The len
parameter should include enough space for a null-terminating byte.

Description
This function copies into the buffer a null-terminated character string representing
the demangled name of the function. The name may be truncated if the len
parameter is smaller than the length of the demangled name. A function’s
demangled name is the name of a function as it appears in the original source code
of a program as seen by a compiler.

Return Values
Returns a pointer to the buffer, which will contain at most len bytes of the
demangled function name. If the FunctionId object is uninitialized, then NULL is
returned.

See Also
get_demangled_name_length , get_mangled_name , get_mangled_name_length

get_demangled_name IBM Confidential, Limited Rights Data

102 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

get_demangled_name_length

Synopsis
#include <FunctionId.h>
unsigned int get_demangled_name_length(void) const;

Description
Returns the length, including the null-terminating byte, of the demangled name of
the function.

Return Values
The length of the object’s demangled name is returned. If the FunctionId object is
uninitialized, 0 is returned.

See Also
get_demangled_name , get_mangled_name , get_mangled_name_length

get_demangled_name_lengthIBM Confidential, Limited Rights Data

Appendix A. Dynamic Probe Class Library (DPCL) Enhancements 103

get_mangled_name

Synopsis
#include <FunctionId.h>
char *get_mangled_name(char *buf, unsigned int len) const;

Parameters
buf

caller-allocated buffer that holds the mangled name

len
maximum number of bytes the function will place in the buffer. The len
parameter should include enough space for a null-terminating byte.

Description
This function copies into the buffer a null-terminated character string representing
the mangled name of the function. The name may be truncated if the len parameter
is smaller than the length of the mangled name. A function’s mangled name is the
name of a function as it appears to the linker and loader. Name mangling is
supported by compilers and linkers to resolve overloaded function names in
object-oriented programming languages. In order to distinguish between two
functions that have the same programmer-visible name, compilers encode
parameter type information into the actual function name as it is seen by the linker
and loader. Mangled names include parameter data type information for some
languages, notably C++, but not necessarily for all languages.

Return Values
Returns a pointer to the buffer, which will contain at most len bytes of the mangled
function name. If the FunctionId object is uninitialized, then NULL is returned.

See Also
get_mangled_name_length , get_demangled_name ,
get_demangled_name_length

get_mangled_name IBM Confidential, Limited Rights Data

104 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

get_mangled_name_length

Synopsis
#include <FunctionId.h>
unsigned int get_mangled_name(void) const;

Description
Returns the length, including the null-terminating byte, of the mangled name of a
function.

Return Values
The length of the object’s mangled name is returned. If the FunctionId object is
unititialized, 0 is returned.

See Also
get_mangled_name , get_demangled_name , get_demangled_name_length

get_mangled_name_lengthIBM Confidential, Limited Rights Data

Appendix A. Dynamic Probe Class Library (DPCL) Enhancements 105

get_module_name

Synopsis
#include <FunctionId.h>
char *get_module_name(char *buf, unsigned int len) const;

Parameters
buf

caller-allocated buffer that holds the module name

len
maximum number of bytes the function will place in the buffer. The len
parameter should include enough space for a null-terminating byte.

Description
Copies into the buffer a null-terminated character string representation of the file
name and path, if available, of the module that contains the function represented by
this FunctionId object. The name may be truncated if the len parameter is smaller
than the length of the module name.

Return Values
Returns a pointer to the buffer, which will contain the file name and path, if
available, of the module that contains the function represented by this FunctionId
object. Returns 0 if the FunctionId object is uninitialized.

See Also
get_module_name_length

get_module_name IBM Confidential, Limited Rights Data

106 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

get_module_name_length

Synopsis
#include <FunctionId.h>
unsigned int get_module_name_length(void) const;

Description
Returns the length, including the null-terminating byte, of the file name and path, if
available, of the module that contains the function represented by this FunctionId
object.

Return Values
Returns the length of the file name and path, if available, of the module that
contains the function represented by this FunctionId object. Returns 0 if the
FunctionId object is uninitialized.

See Also
get_module_name

get_module_name_lengthIBM Confidential, Limited Rights Data

Appendix A. Dynamic Probe Class Library (DPCL) Enhancements 107

operator=

Synopsis
#include <FunctionId.h>
FunctionId & operator=(const FunctionId &rhs);

Parameters
rhs

The right hand operand. This is the existing FunctionId object whose value you
want to assign to the invoking FunctionId object.

Description
Assigns the value of the right hand operand (existing FunctionId object) to the
invoking FunctionId object. The left operand is the invoking object.

For example,
FunctionId rhs, lhs:
.
.
.
lhs = rhs;

assigns the value of rhs to lhs . This yields a new copy of the FunctionId object.

Return Values
Returns a reference to the invoking FunctionId object (the left operand).

operator= IBM Confidential, Limited Rights Data

108 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

operator==

Synopsis
#include <FunctionId.h>
int operator==(const FunctionId& compare);

Parameters
compare

function id to be compared against the invoking object

Description
This function compares two FunctionId objects for equivalence. If the two objects
represent the same function, this function returns 1. Otherwise it returns 0.

Return Values
This function returns 1 if the two objects are equivalent. Otherwise, it returns 0.

operator==IBM Confidential, Limited Rights Data

Appendix A. Dynamic Probe Class Library (DPCL) Enhancements 109

Class FunctionList
Class FunctionList defines an object that contains a list of functions that match a
regular expression search pattern supplied to the SourceObj::bget_function_list
or SourceObj::get_function_list function. An instance of FunctionList should
contain a list of 0 or more FunctionId objects.

operator== IBM Confidential, Limited Rights Data

110 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Constructors

Synopsis
#include <FunctionList.h>
FunctionList(void);
FunctionList(const FunctionList &oldobj);

Description
The default constructor creates a FunctionList object. This FunctionList object will
initially contain no entries. Calling the get_count function will return 0.

The copy constructor uses the values contained in the oldobj to initialize the new
(constructed) object.

See Also
FunctionId , SourceObj::bget_function_list , SourceObj::get_function_list

ConstructorsIBM Confidential, Limited Rights Data

Appendix A. Dynamic Probe Class Library (DPCL) Enhancements 111

get_count

Synopsis
#include <FunctionList.h>
int get_count(void) const;

Description
Returns the number of entries (FunctionId objects) in this function list.

Return Values
Returns an integer indicating the number of entries (FunctionId objects) in this
function list. If this FunctionId object was initialized by a default constructor, this
function returns 0.

See Also
get_entry

get_count IBM Confidential, Limited Rights Data

112 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

get_entry

Synopsis
#include <FunctionList.h>
FunctionId get_entry(int index) const;

Parameters
index

the position or index of a particular entry (FunctionId object) in this function list.

Description
Returns the ith FunctionId object in this function list.

Return Values
Returns the ith FunctionId object if this index is valid. In other words, 0 ≤ i <
get_count();.

See Also
get_count

get_entryIBM Confidential, Limited Rights Data

Appendix A. Dynamic Probe Class Library (DPCL) Enhancements 113

operator=

Synopsis
#include <FunctionList.h>
FunctionList & operator=(const FunctionList &rhs);

Parameters
rhs

The right hand operand. This is the existing FunctionList object whose value
you want to assign to the invoking FunctionList object.

Description
Assigns the value of the right hand operand (existing FunctionList object) to the
invoking FunctionList object. The left operand is the invoking object.

For example,
FunctionList rhs, lhs:
.
.
.
lhs = rhs;

assigns the value of rhs to lhs . This yields a new copy of the FunctionList object.

Return Values
Returns a reference to the invoking FunctionList object (the left operand).

operator= IBM Confidential, Limited Rights Data

114 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Appendix B. PE Benchmarker Command Reference

This appendix contains the manual pages for the PE Benchmarker commands
discussed throughout this book. Each manual page is organized into the sections
listed below. The sections always appear in the same order, but some appear in all
manual pages while others are optional.

NAME Provides the name of the command described in the manual page, and a
brief description of its purpose.

SYNOPSIS
Includes a diagram that summarizes the command syntax, and provides a
brief synopsis of its use and function.

FLAGS
Lists and describes any required and optional flags for the command.

DESCRIPTION
Describes the command more fully than the NAME and SYNOPSIS
sections.

ENVIRONMENT VARIABLES
Lists and describes any applicable environment variables.

EXAMPLES
Provides examples of ways in which the command is typically used.

FILES Lists and describes any files related to the command.

RELATED INFORMATION
Lists commands, functions, file formats, and special files that are employed
by the command, that have a purpose related to the command, or that are
otherwise of interest within the context of the command.

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 115

convert

NAME
convert – Converts AIX event trace files into UTE internal trace files.

SYNOPSIS

convert [-# | -?[[-n number_of_files[[-p profile_file_name]
[-c number_of_records_per_frame] [-f number_of_frames_per_frame_directory]
[-o {output_file_name | output_file_name_prefix}] {input_file_name |
input_file_name_prefix}

The convert command converts one or more AIX event trace files into one or more
UTE interval trace files. The input_file_name (for converting a single AIX event trace
file) or input_file_name_prefix (for converting multiple AIX event trace files) must be
the last item on the command line.

FLAGS
-# or -?

Prints out usage information for the convert command instead of converting
and AIX trace files.

-n number_of_files
Specifies the number of AIX event trace files to be converted. If not specified,
the default is 1.

-p profile_file_name
Specifies the name of the description profile. If not specified, the default profile
is the one specified by the environment variable UTE_PROFILE, or, if the
environment variable UTE_PROFILE is not set, the file profile.ute in the current
directory.

-c number_of_records_per_frame
Specifies the number of interval records per frame.

-f number_of_frames_per_frame_directory
Specifies the number of frames in each frame directory. When a frame directory
is exhausted, this utility automatically creates an additional frame directory and
links it with existing frame directories.

-o {output_file_name | output_file_name_prefix}
If the -n option specifies the number of files as 1 (the default), the -o option
specifies the name of the resulting UTE interval file.

If the -n option specifies the number of files as greater than 1, the -o option
specifies the file name prefix for the resulting UTE interval files. The names of
the output files are formed by concatenating the given prefix with a node
identifier, starting from 0.

DESCRIPTION
The convert command converts one or more AIX event trace files into one or more
UTE interval trace files. If the -n option specifies the number of files to be converted
as 1 (the default), then you supply a single input_file_name to the convert
command. If instead, the -n option specifies the number of files to be converted as
greater than 1, then an input_file_name_prefix is supplied. The input_file_name or
input_file_name_prefix must be the last item on the command line.

IBM Confidential, Limited Rights Data

116 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

ENVIRONMENT VARIABLES
UTE_PROFILE

Specifies the name of the file description profile. If not set, the file
profile.ute in the current directory is the default description profile. If the -p
option is used, its specification overrides the UTE_PROFILE environment
variable’s setting.

EXAMPLES
To convert the AIX trace file mytrace into a UTE interval trace file:
convert mytrace

To convert five trace files with the prefix mytaces into UTE interval trace files:
convert -n 5 mytraces

FILES
profile.ute default description profile.

RELATED INFORMATION
Commands: slogmerge (1), utemerge (1), utestats (1)

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 117

pct

NAME
pct – Invokes the Performance Collection Tool in either its graphical-user-interface
or command-line mode.

SYNOPSIS

pct [-cmd [-s script_file]] [-d diagnostic_log_setting]

The pct command starts the Performance Collection Tool in either its
graphical-user-interface mode, or, if the -cmd flag is specified, its command-line
mode.

FLAGS
-cmd

Specifies that the Performance Collection Tool should be started in
command-line mode. Refer to “Subcommands of the pct Command” on
page 120 for information on the subcommands you can issue once the
Performance Collection Tool is running in this mode.

-s script_file
When running in command-line mode, instructs the Performance Collection Tool
to read its commands from the script file specified. When running in graphical
user interface mode, you cannot use this option.

-d diagnostic_log_setting
Turns diagnostic logging on for this run of the Performance Collection Tool.
When diagnostic logging is turned on, a separate log file will be generated in
the directory /tmp on each host machine running target application processes to
which the Performance Collection Tool connects. The log file is generated by a
daemon process (called the ″DPCL communication daemon″) that handles
communication between the Performance Collection Tool and the target
application process. The log file saved to the /tmp directory will be named
dpcld .nnnn where nnnn is the AIX process ID of the DPCL communication
daemon process. For more information on the DPCL communication daemon,
refer to the manual IBM Parallel Environment for AIX: Dynamic Probe Class
Library Programming Guide. The diag_log_setting specified with this flag can be
one of the following:

severe
The DPCL communication daemon will generate messages for fatal and
severe error conditions only.

warning
In addition to fatal and severe error conditions, the DPCL
communication daemon will generate warning messages.

trace In addition to fatal, severe, and warning messages, the DPCL
communication daemon will also generate function entry/exit trace
information.

detail The most detailed level of diagnostic messages will be generated by
the DPCL communication daemon. In addition to the severe, error,
warning, and function entry/exit trace information, the DPCL
communication daemon will generate other, more general, information.

IBM Confidential, Limited Rights Data

118 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

DESCRIPTION
The Performance Collection Tool is a highly scalable performance monitoring tool
built on IBM’s dynamic instrumentation technology — the Dynamic Probe Class
Library (DPCL). Using the Performance Collection Tool, you can collect:

v MPI and user event traces for eventual analysis by either:

– Jumpshot (a public-domain tool developed at Argonne National Lab).

or

– the utestats utility provided as part of the PE Benchmarker Toolset.

Since the MPI and user trace information will be output as standard AIX trace
files, we have also supplied, as part of the PE Benchmarker tool set, several
utilities for converting the AIX trace files created by the Performance Collection
Tool into a format readable by Jumpshot and the utestats utility.

v Hardware and operating system profiles for playback within the Performance
Visualization Tool (as invoked by the pvt command).

The Performance Collection Tool can be run in either its graphical-user-interface
mode, or, if the -cmd flag is specified, its command-line mode. The Performance
Collection Tool’s graphical user interface is built on top of its command-line
interface; in other words, your manipulations of the graphical user interface are
translated by the tool into pct subcommands. These subcommands are issued, and
the information returned is used to update the graphical user interface. You can
optionally have the pct subcommands that result from your interface interactions:

v displayed in an information area of the Performance Collection Tool’s Main
Window.

v saved to a file.

Both of these options are provided to help you learn the Performance Collection
Tool’s command-line interface more quickly. In addition, if you save the
subcommands to a file, that file can later be read (as is or modified) as a script file
in the Performance Collection Tool’s command-line interface (using the -s option
when issuing the pct Command).

The pct command’s subcommands (for controlling the Performance Collection Tool
in command-line mode) are listed alphabetically under “Subcommands of the pct
Command” on page 120.

EXAMPLES
To start the Performance Collection Tool in graphical-user-interface mode:
pct

To start the Performance Collection Tool in command-line mode:
pct -cmd

To start the Performance Collection Tool in command-line mode, and read
commands from the script file myscript.
pct -cmd -s myscript.cmd

RELATED INFORMATION
Commands: convert (1), pvt (1), slogmerge (1), utemerge (1), utestats (1)

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 119

Subcommands of the pct Command

connect Subcommand (of the pct Command)

connect [{pid process_id | poe pid poe_process_id | task task_list |
group task_group_name]

The connect subcommand connects the Performance Collection Tool to an existing
application. Using this subcommand, you can connect to a single application
process, or the controlling, ″home node″ process in a POE application. Once you
are connected to a controlling POE home node process, you can reissue this
subcommand to connect to one or more of the POE application’s tasks.

all of the application processes in a POE application, or select application
processes (or tasks) of a POE application.

pid process_id
Specifies the process ID of a single application process to connect.

poe pid poe_process_id
Indicates that you are connecting a POE process, and specifies the process
ID of the POE home node process (the executing instance of the poe
command). Only the controlling POE process is connected. To connect to
one or more of the POE application’s tasks, reissue the connect
subcommand.

task task_list
Specifies a list of POE tasks to connect. The tasks in the POE application
can be specified by listing individual values separated by commas (1,3,8,9),
by giving a range of tasks using a colon to separate the ends of the range
(12:15 refer to tasks 12, 13, 14, and 15), by giving a range and increment
value using colons to separate the range and increment values (20:26:2
refers to tasks 20, 22, 24, and 26), or by using a combination of these
(12:18,22,30).

group task_group_name
Specifies the name of a task group. To connect to all tasks in a POE
application, you can specify the task group all, which will have been created
by the Performance Collection Tool when you connected to the controlling,
home node, POE process. Refer to the group subcommand for information
on creating task groups.

For example, to connect to the application process whose AIX process ID is 12345:
connect pid 12345

To connect to the POE ″home node″ process whose AIX process ID is 12345:
connect poe pid 12345

The preceding example connects to just the controlling, home node, process in a
POE application. To now connect to all of the tasks in the POE application:
connect group all

destroy Subcommand (of the pct Command)

destroy [task task_list | group task_group_name]

IBM Confidential, Limited Rights Data

120 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

The destroy subcommand terminates execution of one or more connected
processes. By default, the tasks in the current task group (as previously defined by
the group subcommand) are the ones terminated. You can override this default,
however, by specifying a task_list or task_group_name when you issue the destroy
subcommand.

When working with a POE application, be aware that terminating any process of the
application will cause POE to terminate all of the application’s processes. This
termination of all processes is a function of POE, not of the Performance Collection
Tool. For more information, refer to IBM Parallel Environment for AIX: Operation and
Use, Volume 1, Using the Parallel Operating Environment.

task task_list
Specifies the connected tasks to be terminated. The tasks in the POE
application can be specified by listing individual values separated by
commas (1,3,8,9), by giving a range of tasks using a colon to separate the
ends of the range (12:15 refer to tasks 12, 13, 14, and 15), by giving a
range and increment value using colons to separate the range and
increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by using a
combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

For example, to terminate execution of the tasks in the current task group:
destroy

To terminate task 8:
destroy task 8

To terminate the tasks in task group connected:
destroy group connected

disconnect Subcommand (of the pct Command)

disconnect [task task_list | group task_group_name]

The disconnect subcommand disconnects the Performance Collection Tool from
one or more connected processes. Disconnecting from a process removes any
performance collection probes from the process. Once a process is disconnected,
the Performance Collection Tool will no longer be able to control execution of, or
instrument, the process. By default, the tasks in the current task group (as
previously defined by the group subcommand) are the ones that are disconnected.
You can override this default, however, by specifying a task list or task group name
when you issue the disconnect subcommand.

task task_list
Specifies the connected POE tasks to be disconnected. The tasks in the
POE application can be specified by listing individual values separated by
commas (1,3,8,9), by giving a range of tasks using a colon to separate the
ends of the range (12:15 refers to tasks 12, 13, 14, and 15), by giving a
range and increment value using colons to separate the range and
increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by using a
combination of these (12:18,22,30).

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 121

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

For example, to disconnect from the tasks in the current task group:
disconnect

To disconnect from task 8:
disconnect task 8

To disconnect from the tasks in task group connected:
disconnect group connected

exit Subcommand (of the pct Command)

exit [destroy]

The exit subcommand exits the Performance Collection Tool and, optionally,
terminates execution of all connected processes. Since terminating any process of
the POE application will cause POE to terminate all of the POE application’s
processes, the destroy clause effectively terminates the entire POE application.

For example, to exit the Performance Collection Tool, but allow all of its connected
processes to continue running:
exit

To exit the Performance Collection Tool and terminate the target application:
exit destroy

file Subcommand (of the pct Command)

file [task task_list | group task_group_name] ″regular_expression″

The file subcommand lists, for one or more tasks, any associated source file names
that match a regular expression that you supply. By default, this subcommand
applies to the current task group (as previously defined by the group
subcommand). You can override this default, however, by specifying a task list or
task group name when you issue the file subcommand.

The files are listed by this subcommand as a table with column headings for the
task identifier, file identifier, file name, and, if available, the path.

The file identifiers are determined by sorting the files alphabetically and numbering
them starting from 0. The path will be shown only if the file path information was
supplied when you compiled a file.

task task_list
Specifies the connected POE tasks whose source file names you want to
list. The tasks in the POE application can be specified by listing individual
values separated by commas (1,3,8,9), by giving a range of tasks using a
colon to separate the ends of the range (12:15 refers to tasks 12, 13, 14,
and 15), by giving a range and increment value using colons to separate
the range and increment values (20:26:2 refers to tasks 20, 22, 24, and 26),
or by using a combination of these (12:18,22,30).

IBM Confidential, Limited Rights Data

122 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

″regular_expression″
An AIX regular expression (file-name substitution pattern) enclosed in
quotation marks that identifies the files to list. The file subcommand will
filter the list of file names using this regular expression; only file names that
match this regular expression pattern will be listed.

For example, to list all the files in the current task group:
> file "*"
Tid File Id File Name Path
0 0 bar.c ../../lib/src
0 1 foo1.c ../../lib/src
0 2 foo2.c ../src

To list only the files in task 0 that begin with the letter ″f″
> file task 0 "f*"
Tid File Id File Name Path
0 1 foo1.c ../../lib/src
0 2 foo2.c ../src

find Subcommand (of the pct Command)

file [task task_list | group task_group_name]
function ″regular_expression_to_match_function_name″

The find subcommand lists all function names that match a regular expression
pattern that you supply. This subcommand is intended for situations when you wish
to instrument a particular function, but do not know which file the function is located
in.

The function names found are listed by this subcommand as a table with column
headings for task identifier, file identifier, file name, and function name.

task task_list
Specifies the connected POE tasks whose source files you want to search.
The tasks in the POE application can be specified by listing individual
values separated by commas (1,3,8,9), by giving a range of tasks using a
colon to separate the ends of the range (12:15 refers to tasks 12, 13, 14,
and 15), by giving a range and increment value using colons to separate
the range and increment values (20:26:2 refers to tasks 20, 22, 24, and 26),
or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

function ″regular_expression_to_match_function_name″
An AIX regular expression (file-name substitution pattern) enclosed in
quotation marks that identifies the functions to locate. Matching is
performed using rules of AIX file-name pattern matching. The find
subcommand will filter the list of function names using this regular
expression; only function names that match this regular expression pattern
will be listed.

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 123

For example, to list all the functions in task 0 that match the regular expression
comp*:
> find task 0 function "comp*"
Tid File Id File Name Function Name
0 23 main.c compute
0 23 main.c compare
0 25 sort.c compare2

function Subcommand (of the pct Command)

function [task task_list | group task_group_name]
{file ″regular_expression″[,″regular_expression″] | fileid file_identifier[,file_identifier]}...
″regular_expression_to_match_function_name″

The function subcommand lists, for one or more tasks, the names of the functions
(that match a regular expression pattern you supply) contained in a source file. The
file whose functions are listed can be specified as a file identifier or as a regular
expression that matches the file name; this information can be ascertained by the
file subcommand, or, if you are unsure which file the function is located in, the find
subcommand. By default, this subcommand applies to the current task group (as
previously defined by the group subcommand). You can override this default,
however, by specifying a task list or task group name when you issue the function
subcommand.

The function names are listed by this subcommand as a table with column headings
for task identifier, file identifier, function identifier, file name, and function name.

The function identifiers are determined by sorting the functions contained in a file
alphabetically starting from 0. Each file’s functions are numbered sequentially
starting from 0.

task task_list
Specifies the connected POE tasks containing the source files whose
functions you want to list. The tasks in the POE application can be specified
by listing individual values separated by commas (1,3,8,9), by giving a
range of tasks using a colon to separate the ends of the range (12:15 refers
to tasks 12, 13, 14, and 15), by giving a range and increment value using
colons to separate the range and increment values (20:26:2 refers to tasks
20, 22, 24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

file ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expression patterns, the file(s) whose
functions you want to list. The regular expression patterns must be
contained in quotation marks.

fileid file_identifier[,file_identifier]...
Specifies, using one or more file identifiers as returned by the file
subcommand, the file(s) whose functions you want to list.

″regular_expression_to_match_function_name″
A regular expression enclosed in quotation marks that identifies the function
names to list. Matching is performed using rules of AIX file-name pattern
matching. The function subcommand will filter the list of function names
using this expression; only function names (for the tasks/file indicated) that
match the regular expression will be listed.

IBM Confidential, Limited Rights Data

124 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

For example, to list all the functions in the file ″bar.c″ in task 0:
> function task 0 file "bar.c" "*"
Tid File Id Function Id File Name Function Name
0 1 1 bar.c func0
0 1 1 bar.c func1

To list all the functions in the file ″bar.c″ (using the file identifier) in task 0:
> function task 0 fileid 1 "*"
Tid File Id Function Id File Name Function Name
0 1 1 bar.c func0
0 1 1 bar.c func1

To list, for task 0, all of the functions in files beginning with ″b″ or ″d″:
> function task 0 file "b*", "d*" "*"
Tid File Id Function Id File Name Function Name
0 3 0 bar.c func0
0 3 1 bar.c func1
0 3 2 bar2.c func_xyz
0 4 0 bar2.c calc
0 4 1 bar2.c do_math
0 4 2 bar2.c sum

group Subcommand (of the pct Command)

group default task_group_name

group add task_group_name task_list

group delete task_group_name [task_list]

The group subcommand can perform three distinct actions related to task groups:

v Using the default action of the group command:

group default task_group_name

you can set the command context on a particular task group. When you do this,
the task group you specify becomes the current task group; certain other
subcommands that you issue (such as the file , function , and point
subcommands) will, by default, apply only to the tasks in the current task group.

v Using the add action of the group subcommand:

group add task_group_name task_list

you can create a new task group, or add tasks to and existing task group.

v Using the delete action of the group subcommand:

group delete task_group_name [task_list]

you can delete, or delete selected tasks from, a task group. If a task list is
specified, these tasks are removed from the task group; otherwise, the entire
task group is deleted.

In addition to any task groups you create using the group subcommand, note that
there are two task groups that are created automatically by the Performance
Collection Tool when you issue either the load or connect subcommands. These
automatically-created task groups are named all and connected. The all task group

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 125

contains all tasks in the current application, while the connected task group contains
the set of tasks to which the Performance Collection Tool is connected.

task_group_name
refers to the name of the task group that, depending on the particular
group subcommand action you are executing, you want to:

v make the default task group

v create or add tasks to

v delete or remove tasks from

task_list
Refers to the list of tasks that, depending on the particular group
subcommand action you are executing, you want to either add to, or delete
from, the task group. The tasks can be specified by listing individual values
separated by commas (1,3,8,9), by giving a range of tasks using a colon to
separate the ends of the range (12:15 refers to tasks 12, 13, 14, and 15),
by giving a range and increment value using colons to separate the range
and increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by
using a combination of these (12:18,22,30).

For example, to create a task group master consisting of task 0, and a task group
workers consisting of tasks 1 through 20.
group add master 0
group add workers 1:20

To add tasks 21 through 30 to the task group workers:
group add workers 21:30

To make the group workers the default task group:
group default workers

To remove tasks 21 through 30 from the task group workers.
group delete workers 21:30

To delete the task group workers:
group delete workers

list Subcommand (of the pct Command)

list [task task_list | group task_group_name]
[file ″regular_expression″ [,″regular_expression″]... |
fileid file_identifier[,file_identifier]...] [line line_number_range]

The list subcommand returns the contents of a file. The first time you issue this
subcommand, you should specify a file using the file or fileid clause. Doing this will
list the entire file’s contents. To list only a portion of the files contents, specify a line
number range using the line clause. To minimize typing, the Performance Collection
Tool records the number of the last source code line displayed; issuing the list next
subcommand will display the next few lines of the source code. By default, this form
of the subcommand applies to the current task group (as previously defined by the
group subcommand). You can override this default, however, by specifying a task
list or task group name when you issue the list subcommand.

task task_list
Specifies the connected POE tasks containing the source files whose
contents you want to list. The tasks in the POE application can be specified

IBM Confidential, Limited Rights Data

126 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

by listing individual values separated by commas (1,3,8,9), by giving a
range of tasks using a colon to separate the ends of the range (12:15 refers
to tasks 12, 13, 14, and 15), by giving a range and increment value using
colons to separate the range and increment values (20:26:2 refers to tasks
20, 22, 24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

file ″regular expression″ [,″regular expression″]...
Specifies, using one or more regular expressions, the file(s) whose contents
you want to list.

fileid file_identifier[,file_identifier]...
Specifies, using one or more file identifiers as returned by the file
subcommand, the file(s) whose contents you want to list.

line line_number_range
The line number range of the source code you want to list. Use a colon to
separate the ends of the range (for example 1:20).

For example, to list lines 1 through 20 of the source file ″bar.c″:
list bar.c 1:20

load Subcommand (of the pct Command)

load {{exec [poe] absolute_path_to_executable } | {poe
[mpmdcmd path_to_poe_commands_file] [poeargs ″poe_arguments_string″]}
[args ″program_arguments_string″]
[poeargs ″poe_arguments_string″] [stdout standard_out_file_name]
[stderr standard_error_file_name] [stdin standard_input_file_name]

The load subcommand loads a serial or POE application for execution. Once an
application is loaded, you can instrument it with probes, or control its execution
using the start , suspend , resume , and terminate subcommands. The load
subcommand is intended for applications that are not already executing; to connect
to applications that are already executing, use the connect subcommand. The poe
clause indicates that the application is a POE application; if not specified, the load
subcommand assumes you are loading a serial application. The load subcommand
loads the application into memory in a ″stopped state″ with execution suspended at
its first executable instruction. You can start execution of the application using the
start subcommand.

exec absolute_path_to_executable
Specifies the full path to the executable file. If you are loading a POE
application, you must also include the keyword poe (as described below) on
the command line. You specify the path_to_executable as an absolute path.

poe specifies that you are loading a POE program.

mpmdcmd path_to_poe_commands_file
Specifies that the POE program you’re loading follows the Multiple Program
Multiple Data (MPMD) model and indicates the path to the POE commands
file listing the executable programs to run. For more information on POE
commands files, refer to manual IBM Parallel Environment for AIX:
Operation and Use, Volume 1.

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 127

poeargs ″poe_arguments_string″
Specifies command-line arguments that are passed to the poe command to
control various aspects of the Parallel Operating Environment. For a
complete listing of the POE arguments you can supply, refer to the manual
IBM Parallel Environment for AIX: Operation and Use, Volume 1. The POE
arguments should be provided as a string delimited by double quotation
marks. Embedded quotation marks can be included in the string if each
mark is preceded by an escape character (\). Embedded escape characters
may also be included if they are preceded by an additional escape
character.

args ″program_arguments_string″
Specifies command-line arguments that are passed to the application. Note
that these are not POE arguments, which are instead specified by using the
poeargs clause. The program arguments should be provided as a string
delimited by double quotation marks. Embedded quotation marks can be
included in the string if each mark is preceded by an escape character (\).
Embedded escape characters may also be included if they are preceded by
an additional escape character.

stdout standard_out_file_name
Redirects standard output to the file specified.

stderr standard_error_file_name
Redirects standard error to the file specified.

stdin standard_input_file_name
Reads standard input from a file.

For example, the following command loads the serial executable foo and passes it
the argument string ″a b c″:
load exec /u/example/bin/foo args "a b c"

The following command loads the POE executable parallel_foo and passes it POE
arguments:
load poe exec /u/example/bin/parallel_foo poeargs "-procs 4 -hfile /tmp/host.list"

The following command loads an MPMD POE program. The executable files to load
are listed in the POE commands file /u/example/bin/foo.cmds:
load poe mpmdcmd /u/example/bin/foo.cmds poeargs "-procs 3 -hfile /tmp/host.list"

point Subcommand (of the pct Command)

point [task task_list | group task_group_name]
{file ″regular_expression″[,″regular_expression″]... |
fileid file_identifier[,file_identifier]...}
[function ″regular_expression″[,″regular_expression″]... |
funcid function_identifier[,function_identifier]...]

Lists the instrumentation points (at the task, file, or function level) where custom
user markers can be added by the trace add subcommand. You only need to
identify instrumentation points when installing custom user markers using the trace
add subcommand. You do not need the instrumentation point information if
installing MPI trace probes using the trace add subcommand or profile probes
using the profile add subcommand. By default, this subcommand will list the
instrumentation points for the tasks in the current task group (as previously defined
by the group subcommand). You can override this default, however, by specifying a

IBM Confidential, Limited Rights Data

128 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

task list or task group name when you issue the point subcommand. Using the
function clause, you can specify one or more functions whose instrumentation
points you want listed. Using the file or fileid clause, you can specify a particular
file whose instrumentation points you want listed.

The instrumentation points are listed by this subcommand as a table with headings
for task identifier, file identifier, function identifier, point identifier, point type, and
callee name.

The point identifiers are determined by numbering the points, starting from 0,
according to their location in each function. The first instrumentation point in the
function is given the identifier 0, the second is given the identifier 1, and so on.
Each function’s instrumentation points are numbered separately starting from 0.

task task_list
Specifies the connected POE tasks whose instrumentation points you want
to list. The tasks in the POE application can be specified by listing individual
values separated by commas (1,3,8,9), by giving a range of tasks using a
colon to separate the ends of the range (12:15 refers to tasks 12, 13, 14,
and 15), by giving a range and increment value using colons to separate
the range and increment values (20:26:2 refers to tasks 20, 22, 24, and 26),
or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

file ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expressions (file name substitution
patterns), the file(s) whose instrumentation points you want to list. The
regular expression(s) must be contained in quotation marks.

fileid file_identifier[,file_identifier]
specifies, using one or more file identifiers as returned by the file
subcommand, the file(s) whose instrumentation points you want to list.

function ″regular_expression″[,regular_expression″]...
Specifies, using one or more regular expressions, the function(s) whose
instrumentation points you want to list. This regular expression must be
contained in quotation marks.

funcid function_identifier[,function_identifier]
Specifies, using one or more function identifiers as returned by the function
subcommand, the function(s) whose instrumentation points you want to list.

For example, to list all the instrumentation points in task 0 for the file bar.c:
> point task 0 file bar.c
Tid File Id Function Id Point Id Point Type Callee Name
--- ------- ----------- -------- ---------- ------------
0 54 0 0 0
0 54 0 1 2 printf
0 54 0 2 3 printf
0 54 0 3 2 MPI_Abort
0 54 0 4 3 MPI_Abort
0 54 0 5 1
0 54 1 0 0
0 54 1 1 2 printf
0 54 1 2 3 printf
0 54 1 3 2 printf
0 54 1 4 3 printf
0 54 1 5 2 MPI_Recv

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 129

0 54 1 6 3 MPI_Recv
0 54 1 7 2 consume_data
0 54 1 8 3 consume_data
0 54 1 9 2 printf
0 54 1 10 3 printf
0 54 1 11 1

profile add Subcommand (of the pct Command)

profile add [task task_list | group task_group_name]
{{profname profile_type_name | profid profile_type_identifier}
[groupid group_identifier | groupname group_name]}...
[to {file ″regular_expression″[,″regular_expression″]... |
fileid file_identifier[,file_identifier]...}
[function ″regular_expression″[,″regular_expression″]...|
funcid function_identifier[,function_identifier...]]]

The profile add subcommand adds one or more probes to collect hardware and
operating system profile information. You cannot use this subcommand, or any of
the profile subcommands, unless you have specified that you are collecting profile
data. To specify that you are collecting profile data, issue the select subcommand
with its profile clause:
select profile

If you add multiple profile probes (by specifying multiple probe types in the
profile_types_list), be aware that they are considered a single set of probes. When
removing profile probes using the profile remove subcommand, you will not be
able to remove individual probes. Instead, you’ll have to remove the entire set of
probes.

By default, this subcommand will add the probe(s) to the tasks in the current task
group (as previously defined by the group subcommand). You can override this
default, however, by specifying a task list or task group name when you issue the
profile add subcommand. Be aware, however, that the set of tasks cannot include
different executables in an MPMD application. For example, if an MPMD application
consists of executables a.out and b.out, then this command cannot be applied to a
task group that contains both a.out and b.out tasks.

task task_list
Specifies the connected POE tasks to which you want to add the profile
probes. The tasks in the POE application can be specified by listing
individual values separated by commas (1,3,8,9), by giving a range of tasks
using a colon to separate the ends of the range (12:15 refers to tasks 12,
13, 14, and 15), by giving a range and increment value using colons to
separate the range and increment values (20:26:2 refers to tasks 20, 22,
24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

profname profile_type_name
Specifies, using a probe type name, a profile probe type to add. To list the
profile probe type names, use the profile show subcommand (with its
probetypes clause specified):
profile show probetypes

IBM Confidential, Limited Rights Data

130 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

profid profile_type_identifier
Specifies, using a probe type identifier, a profile probe type to add. To list
the profile probe type identifiers, use the profile show subcommand (with
its probetypes clause specified):
profile show probetypes

groupid group_identifier
If you are collecting hardware counter information, a profile group identifier
indicating the specific hardware counter information you want to collect. To
get a list of the profile groups available for your hardware, use the
command:
profile show probetype hw

groupname group_name
If you are collecting hardware counter information, a profile group name
indicating the specific hardware counter information you want to collect. To
get a list of the profile groups available for your hardware, use the
command:
profile show probetype hw

file ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expressions (file name substitution
patterns), the file(s) you wish to instrument with profile probes. The regular
expressions must be enclosed in quotation marks.

fileid file_identifier[,file_identifier]...
Specifies, using one or more file identifiers as returned by the file
subcommand, the file(s) you wish to instrument with profile probes.

function ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expressions, the functions you wish to
instrument with the profile probes. The regular expression must be enclosed
in quotation marks.

funcid function_identifier[,function_identifier]...
Specifies, using one or more function identifiers as returned by the function
subcommand, the functions you wish to instrument with the profile probes.

For example, to add a profile probe to collect wallclock data for the current task
group:
profile add profname wc to fileid 5 funcid 3

To add a profile probe to collect wallclock data, and hardware data using counter
group 2:
profile add profname wc profname hw groupid 2 to fileid 3

profile remove Subcommand (of the pct Command)

profile remove [task task_list | group task_group_name] probe probe_index

The profile remove subcommand removes the profile probe set specified by the
supplied probe_index. A profile probe set consists of one or more probes as
previously installed by the profile add subcommand. An installed profile probe’s
probe_index can be ascertained by the profile show subcommand (with its probes
clause) as in:
profile show probes

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 131

By default, the profile remove subcommand will remove the profile probe set from
all tasks in the current task group (as previously defined by the group
subcommand). You can override this default, however, by specifying a task list or
task group name when you issue the profile remove subcommand.

task task_list
Specifies the connected POE tasks to which you want to remove the profile
probe set. The tasks in the POE application can be specified by listing
individual values separated by commas (1,3,8,9), by giving a range of tasks
using a colon to separate the ends of the range (12:15 refers to tasks 12,
13, 14, and 15), by giving a range and increment value using colons to
separate the range and increment values (20:26:2 refers to tasks 20, 22,
24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

probe probe_index
Specifies, using a probe index, the profile probe set to be removed. The
probe index can be ascertained by issuing the profile show subcommand
(with its probes clause) as in:
profile show probes

For example, to remove the profile probe set whose index is 3 from all connected
tasks (as represented by the task group connected):
profile remove group connected 3

profile set path Subcommand (of the pct Command)

profile set path path_name/output_file_base_name

The profile set path subcommand specifies the output location and base name for
the profile data files generated by profile probes that you install using the profile
add subcommand.

path_name/output_file_base_name
specifies a relative or full path to the desired location for the profile output
files, followed by the output file base name. The base name is needed
because the data collected by the Performance Collection Tool will be
saved as a file on each host machine where a connected process with
probes is running. The file name will consist of the base name you supply
followed by a node-specific suffix supplied by the Performance Collection
Tool. If a relative path is specified, note that the location will be relative to
the application’s current working directory.

For example, to specify the relative path profile/output as the location for profile
output files:
profile set path profile/output

profile show Subcommand (of the pct Command)

profile show {probes | probetypes | probetype probe_type_name | path }

The profile show subcommand lists, depending on the clause you specify, either
the currently installed profile probes, the list of profile probe types that you can
install, or the profile file output location.

IBM Confidential, Limited Rights Data

132 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

probes
Specifies that the profile show subcommand should list the currently
installed profile probes (including the probe index). The probe index
information is needed when removing a profile probe using the profile
remove subcommand.

probetypes
Specifies that the profile show subcommand should list the available probe
types you can add using the profile add suncommand. This information is
returned in the form:

probe_type_index:probe_name:probe_description

probetype probe_type_name
Specifies that the subcommand should list the options for the specified
probe type. Currently, only hardware counter probes have options.

path Specifies that you want the trace show subcommand to return the profile
file output location and base name as set by the command:
profile set path

For example, to list the installed profile probes:
profile show probes

To list available profile probe types:
> profile show probetypes
Prof Id Prof Name Description
------- --------- ----------------
0 wclock wall clock
1 rusage resource usage
2 hwcount hardware counter

resume Subcommand (of the pct Command)

resume [task task_list | group task_group_name]

The resume subcommand resumes execution of one or more processes that have
previously been suspended by the suspend subcommand. By default, the tasks in
the current task group (as previously defined by the group subcommand) are the
ones that have their execution resumed. You can override this default, however, by
specifying a task list or task group name when you issue the resume subcommand.

task task_list
Specifies the connected POE tasks that you want to resume executing. The
tasks in the POE application can be specified by listing individual values
separated by commas (1,3,8,9), by giving a range of tasks using a colon to
separate the ends of the range (12:15 refers to tasks 12, 13, 14, and 15),
by giving a range and increment value using colons to separate the range
and increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by
using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

For example, to resume execution of all tasks in the current task group:
resume

To resume execution of tasks 0 through 20:

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 133

resume task 0:20

To resume execution of the tasks in task group mygroup:
resume group mygroup

select Subcommand (of the pct Command)

select {trace | profile }

The select subcommand enables you to select the type of probe data you will be
collecting.

trace Specifies that you intend to collect MPI or custom user event traces for
eventual playback within Jumpshot.

profile
Specifies that you intend to collect hardware and operating system profiles
for playback within the Performance Visualization Tool.

For example, if you will be adding trace probes (using the trace add subcommand)
for collecting MPI or custom user event data:
select trace

If, on the other hand, you will be adding profile probes (using the profile add
subcommand) for collecting hardware and operating system profiles:
select profile

set Subcommand

set sourcepath [relative] path_list

The set subcommand enables you to set the path used when displaying the
contents of a file using the list subcommand. The initial value for the source path is
the directory in which the tool was started.

relative
Specifies that, if relative path information is included as part of the file name
supplied to the list subcommand, the relative path should be used together
with the directories listed in the pathlist.

For example, say one of the source files in the application is named
″../../myapp/src/compute.c″ and the source path is
″/tmp:/usr/tmp:/home/mydir/examples/yourapp″. If the relative keyword is
used when setting the source path, the Performance Collection Tool
searches the following directories when the list /../../myapp/src/compute.c
subcommand is issued.
/tmp/../../myapp/src/
/usr/tmp/../../myapp/src/
/home/mydir/examples/yourapp/../../myapp/src/

If the relative keyword is not used when setting the source path, however,
the following directories are searched:
/tmp/
/usr/tmp/
/home/mydir/examples/yourapp/

IBM Confidential, Limited Rights Data

134 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

path_list
A colon-delimited list that specifies the path the list subcommand will use to
search for source files.

show Subcommand (of the pct Command)

show events

show group [task_group_name]

show groups

show next

show points

show ps

show sourcepath

show tools

The show subcommand returns, depending on the form of the subcommand you
use, various information about the target application and the Performance Collection
Tool.

v Using the form show events returns a list of the possible events that, if you
place the Performance Collection Tool in an event loop using the wait
subcommand, can break the Performance Collection Tool out of the loop.

v Using the form:

show group [task_group_name]

returns, for each task in the current or specified task group, the task identifier, the
task name, and the name of the host machine on which the task is running. If
you do not specify a task group name when issuing this subcommand, the tasks
in the current task group (as previously defined by the group subcommand) are
listed.

v Using the form:

show groups

returns a list of task groups. This includes any task groups created by default
(the task groups all and connected), and any task groups you created using the
group subcommand. An ampersand character (@) is displayed to the right of the
default task group.

v Using the form:

show points

returns a list of the available instrumentation point types. This enables you to
associate the instrumentation point information returned by the point
subcommand with a numeric point identifier needed when installing custom
markers using the trace add subcommand.

v Using the form:

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 135

show ps

returns a list of the processes you own on the node where you started the
Performance Collection Tool. This information is needed when connecting to an
application using the connect subcommand.

v Using the form:

show sourcepath

returns a list of directories searched when displaying the contents of a file using
the list subcommand. You can set the source path using the set subcommand.

If only the base source path is used to search for files, the word ″BASE″ will
appear in parentheses at the top of the list of directories. For example:
PATH (BASE)
/tmp/
/usr/tmp/
/home/mydir/examples

If the relative keyword was used on the set subcommand, then, if relative path
information is supplied in the name of the file requested for viewing with the list
subcommand, the relative path is appended to the directories specified by the
set subcommand. If the relative keyword was specified, the word ″RELATIVE″
will appear in parentheses at the top of the list of directories.

v Using the form:

show tools

returns a list of the types of information you can collect using the Performance
Collection Tool (for this release, ″trace″ and ″profile″) This information is needed
when selecting the type of data you will be collecting using the select
subcommand.

group [task_group_name]
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

events
Specifies that you want the subcommand to return a list of event names
that can break the Performance Collection Tool out of an event loop
established by the wait subcommand.

groups
Specifies that you want the subcommand to return a list of task groups.

next Specifies that you want the subcommand to return the next few lines of the
source code.

points Specifies that you want the suncommand to return a list of all tasks in all
task groups.

ps Specifies that you want the subcommand to return a list of the processes
you own on this host machine.

tools Specifies that you want the subcommand to return a list of the type of
information you can collect using the Performance Collection Tool.

For example, to show the tasks in the current task group:
show group

IBM Confidential, Limited Rights Data

136 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

To show the tasks in the task group ″connected″:
show group connected

To show the processes that you own on the host machine:
show ps

start Subcommand (of the pct Command)

start

The start subcommand starts execution of an application you have loaded using
the load subcommand. (The load subcommand loads an application into memory in
a ″stopped state″ with execution suspended at the first executable instruction.)

For example, to start execution of the currently-loaded application:
start

stdin Subcommand (of the pct Command)

stdin [{″string″ | eof }]

The stdin subcommand sends the supplied string as standard input to the currently
loaded application. If no string is supplied, the stdin subcommand will send a
newline character to the application. If the eof option is supplied, the stdin
subcommand will send an end-of-file character to the application.

You can also, when loading an application using the load subcommand, indicate
that the application should read standard input from a file specified by the stdin
option. If the stdin option is used when loading an application with the load
subcommand, note that the stdin subcommand cannot be used.

″string″
Specifies a text string to send to standard input. The string should be
enclosed in quotes, and embedded formatting characters (such as \n) are
permitted. If no string is supplied, the stdin subcommand will send a
newline character to the application.

eof sends an end-of-file character to the input stream reading this input data.

For example:
stdin "now is the time \nfor all good men"

suspend Subcommand (of the pct Command)

suspend [task task_list | group task_group_name]

The suspend subcommand suspends execution of one or more processes. By
default, the tasks in the current task group (as previously defined by the group
subcommand) are the ones that are suspended. You can override the default,
however, by specifying a task list or task group name when you issue the suspend
command. You can resume execution of tasks suspended by this subcommand by
issuing the resume subcommand.

task task_list
Specifies the connected POE tasks that you want to suspend. The tasks in
the POE application can be specified by listing individual values separated

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 137

by commas (1,3,8,9), by giving a range of tasks using a colon to separate
the ends of the range (12:15 refers to tasks 12, 13, 14, and 15), by giving a
range and increment value using colons to separate the range and
increment values (20:26:2 refers to tasks 20, 22, 24, and 26), or by using a
combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

For example, to suspend execution of all tasks in the current task group:
suspend

To suspend execution of tasks 0 through 20:
suspend task 0:20

To suspend execution of the tasks in task group ″mygroup″:
suspend group mygroup

trace add Subcommand (of the pct Command)

trace add [task task_list | group task_group_name]
{mpiid probetype_number_list | mpiname probe_name_list} [to
{file ″regular_expression″[,″regular_expression″] | fileid file_identifier[,file_identifier]}
[function ″regular_expression″[,″regular_expression″]... |
funcid function_identifier[,function_identifier]...]]

trace add {simplemarker ″marker_name″ | {{beginmarker | endmarker } ″marker_name″}
| {traceon | traceoff }} to {file ″regular_expression″[,″regular_expression″] |
fileid file_identifier[,file_identifier]}
{function ″regular_expression″[,″regular_expression″]... |
funcid function_identifier[,function_identifier]...} pointid point_identifier

The trace add subcommand enables you to add the following types of probes to
one or more tasks. You can add:

v MPI trace probes. If you add multiple MPI trace probes (by specifying multiple
probe names in the probe_name_list), be aware that they are considered a single
set of probes. When removing MPI trace probes using the trace remove
subcommand, you will not be able to remove selected probes. Instead, you’ll
have to remove the entire set of probes.

v simple user markers to trace events of interest

v begin user markers and end user markers to trace intervals of interest

v user markers to force tracing on and off

You cannot use this subcommand, or any of the trace subcommands, unless you
have specified that you are collecting trace data. To specify that you are collecting
trace data, issue the select subcommand with its trace clause:
select trace

By default, this subcommand will add the probes to the tasks in the current task
group (as previously defined by the group subcommand). You can override this
default, however, by specifying a task list or task group name when you issue the
trace add subcommand. Be aware, however, that the set of tasks cannot include
different executables in an MPMD application. For example, if an MPMD application

IBM Confidential, Limited Rights Data

138 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

consists of executables a.out and b.out, then this command cannot be applied to a
task group that contains both a.out and b.out tasks.

task task_list
Specifies the connected POE tasks to which you want to add the trace
probes or user markers. The tasks in the POE application can be specified
by listing individual values separated by commas (1,3,8,9), by giving a
range of tasks using a colon to separate the ends of the range (12:15 refers
to tasks 12, 13, 14, and 15), by giving a range and increment value using
colons to separate the range and increment values (20:26:2 refers to tasks
20, 22, 24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

mpiid probe_number_list
A probe identifier (or a list of comma-separated probe identifiers) indicating
the type of MPI data (collective communication, point-to-point
communication, one-sided operations, and so on) that you want to collect.
To get a list of the probe identifiers, issue the trace show subcommand
with its probetypes clause as in:
trace show probetypes

mpiname probe_name_list
A probe name (or a list of comma-separated probe names) indicating the
type of MPI data (collective communication, point-to-point communication,
one-sided operations, and so on) that you want to collect. To get a list of
the probe names, issue the trace show subcommand with its probetypes
clause as in:
trace show probetypes

simplemarker ″marker_name″
Indicates that the probe is a simple marker being placed in the target
application to trace a particular event of interest. A simple marker appears
in the trace record as a single point.

{beginmarker | endmarker} ″marker_name″
Specifies that the probe is a user marker that marks either the beginning or
ending of a named user state. You need to mark both the beginning and
ending of the range with the same ″marker_name″ (a string that will be
used to identify the user state in the trace record). You can only use a
particular marker name for one begin marker/end marker pair. The state will
appear in the trace record as a region.

{traceon | traceoff}
Specifies that the probe is a user marker that will either force tracing on or
off. This provides a finer degree of trace control than is otherwise available
when merely specifying the task, file, and function to trace.

file ″regular_expression″[,″regular_expression″]...
Specifies, using one or more regular expressions (file name substitution
patterns), the file(s) you wish to instrument. The regular expression must be
contained in quotation marks.

fileid file_identifier[,file_identifier]...
Specifies, using one or more file identifiers as returned by the file
subcommand, the files you wish to instrument.

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 139

function ″regular_expression″[,″regular_expression″]
Specifies, using one or more regular expressions, the function(s) you want
to instrument.

funcid function_identifier[,function_identifier]...
Specifies, using one or more function identifiers as returned by the function
subcommand, the function you want to instrument.

pointid point_identifier
Specifies, using a point identifier, the instrumentation point at which to add
the user markers.

For example, to trace collective communication events in the file ″foo.c″:
trace add mpiname coll to file "foo.c"

To add a begin state marker named ″green″ to the second point of the first function
of file ″foo.c″:
trace add beginmarker "green" to file "foo.c" funcid 0 pointid 1

trace remove Subcommand (of the pct Command)

trace remove {marker marker_id | probe probe_index}

The trace remove subcommand enables you to remove a custom user marker or a
trace probe set.

marker marker_id
Specifies the marker identifier of the custom user marker you want to
remove. To ascertain the marker identifier, use the trace show
subcommand with its markers clause.
trace show markers

probe probe_index
Specifies, using a probe index, the trace probe set you wish to remove. A
trace probe set consists of one or more probes previously installed by the
trace add subcommand. To ascertain the trace probe set you wish to
remove, use the trace show subcommand with its probes clause as in:
trace show probes

For example, to remove the trace probe whose probe identifier is ″2″:
trace remove probe 2

trace set Subcommand (of the pct Command)

trace set { path path_name/output_file_base_name | [bufsize buffer_size]
[event {mpi | process }] [logsize maximum_log_size]}

The trace set subcommand enables you to specify various settings for event trace
collection. You cannot use this subcommand, or any of the trace subcommands,
unless you have specified that you are collecting trace data. To specify that you are
collecting trace data, issue the select subcommand with its trace clause:
select trace

There are two forms of this subcommand.

v Using the form:

IBM Confidential, Limited Rights Data

140 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

trace set path path_name/output_file_base_name

enables you to specify the output location and base name for the trace files.

v Using the form:

trace set [bufsize buffer_size] [event {mpi | process }]
[logsize maximum_log_size]}

enables you to specify the:

– size of the AIX trace buffer size

– the type of events (MPI events or process dispatch events) that are traced

– maximum size of the output trace file

The settings you make with this subcommand will stay in effect until you issue
the select subcommand.

path path_name/output_file_base_name
Specifies a relative or full path name to the desired location for trace files
followed by the output file base name. The base name is needed because
the data collected by the Performance Collection Tool will be stored as a file
on each host machine where a connected process with probes is running,
The file name will consist of the base name you supply followed by a node
specific suffix supplied by the Performance Collection Tool.

bufsize buffer_size
Specifies the AIX trace buffer size in Kilobytes. This value can be at most
1024, which is also the default value.

event {mpi | process}
Specifies the type of events (MPI events or process dispatch events) that
are traced. By default, MPI events are traced.

logsize maximum_log_size
Specifies the maximum trace file size in Megabytes. The default is 20 M.

For example, to specify the directory tracefiles/mytrace as the output directory for
the trace files:
trace set path tracefiles/mytrace

To specify the buffer size to be 900 K and the maximum trace file size to be 25 M:
trace set bufsize 900 logsize 25

trace show Subcommand (of the pct Command)

trace show {[task task_list | group task_group_name] {markers | probes } |
probetypes | path }

The trace show subcommand lists, depending on the clause you specify, either:

v the currently installed trace probes:

trace show [task task_list | group task_group_name] probes

v the currently installed user markers:

trace show [task task_list | group task_group_name] markers

v the list of available trace probe types you can add using the trace add
subcommand:

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 141

trace show probetypes

v the trace file output location and base name:

trace show path

The path is set by the subcommand:
trace set path

When listing the currently installed trace probes or user markers, the action is
performed for the tasks in the current task group (as previously defined by the
group subcommand). You can override this default, however, by specifying a task
list or task group name when you issue the trace show subcommand.

task task_list
Specifies the connected POE tasks whose trace probes or user markers
you want to list. The tasks in the POE application can be specified by listing
individual values separated by commas (1,3,8,9), by giving a range of tasks
using a colon to separate the ends of the range (12:15 refers to tasks 12,
13, 14, and 15), by giving a range and increment value using colons to
separate the range and increment values (20:26:2 refers to tasks 20, 22,
24, and 26), or by using a combination of these (12:18,22,30).

group task_group_name
Specifies the name of a task group. Refer to the group subcommand for
information on creating task groups.

markers
Specifies that you want the trace show subcommand to list the currently
installed user markers. The markers are listed in the form:

[marker_identifier]
task_identifier:file_identifier:function_identifier:point_identifier

path Specifies that you want the trace show subcommand to return the trace file
output location and base name as set by the subcommand:
trace set path

probes
Specifies that you want the trace show subcommand to list the currently
installed trace probes.

probetypes
Specifies that you want the trace show subcommand to list the available
trace probe types you can add using the trace add subcommand.

For example, to list the trace probes installed in the tasks in the current task group:
trace show probes

To list the user markers for the tasks in the task group ″workers″:
trace show group workers markers

To list the available probe types:
trace show probetypes

wait Subcommand (of the pct Command)

wait

IBM Confidential, Limited Rights Data

142 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

The wait subcommand places the Performance Collection Tool in an event loop so
that it can wait for asynchronous system events (such as a task terminating) to
occur. When one of these asynchronous events occurs, the Performance Collection
Tool breaks out of the loop and returns the event that occurred. Be aware that this
command is intended only for use within scripts you write, and is not intended for
interactive command-line sessions. If you use it during an interactive command-line
session, the only way to break out of the loop is to press <control>-C which will kill
the Performance Collection Tool.

To see a list of the possible events that can break the Performance Collection Tool
out of the event loop, issue the subcommand:
show commands

For example, the following example places the Performance Collection Tool into the
event loop. It breaks out of this loop when the target application terminates, and
returns the event name ″app_term″:
> wait
app_term

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 143

pvt

NAME
pvt – Invokes the Profile Visualization Tool in either its graphical-user-interface or
command-line mode.

SYNOPSIS

pvt [-cmd [one_or_more_file_names]]

The pvt command starts the Profile Visualization Tool in either its
graphical-user-interface mode, or, if the -cmd flag is specified, its command-line
mode. In either mode, you can specify one or more file names to start the Profile
Visualization Tool with profile data showing.

FLAGS
-cmd

Specifies that the Profile Visualization Tool should be started in command-line
mode. Refer to “Using the Profile Visualization Tool’s Command Line Interface”
on page 88 for information on the subcommands you can issue once the
Profile Visualization Tool is running in this mode.

DESCRIPTION
The Profile Visualization Tool is a post-mortem analysis tool. It is designed to
process profile data files generated by the Performance Collection Tool used in
application profiling. You can run the Profile Visualization Tool in either its
graphical-user-interface mode, or, if the -cmd flag is specified, its command-line
mode. After processing profile data, you can view the results in the Profile
Visualization Tool’s graphical user interface display, outputted to report files, or
saved to a summary file. The Profile Visualization Tool provides a command-line
interface to process individual profile files directly into a summary file without
initializing the graphic display. The command-line interface also enables you to
generate textual profile reports.

The pvt command’s subcommands (for controlling the Profile Visualization Tool in
command-line mode) are listed alphabetically under “Subcommands of the pvt
Command” on page 146.

EXAMPLES
To start the Profile Visualization Tool in graphical-user-interface mode showing an
empty graphical user interface:
pvt

To start the Profile Visualization Tool in graphical-user-interface mode with profile
data showing:
pvt one_or_ more_file_names

To start the Profile Visualization Tool in command-line mode:
pvt -cmd

To start the Profile Visualization Tool in command-line mode with profile data
showing:

IBM Confidential, Limited Rights Data

144 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

pvt -cmd one_or_more_file_names

RELATED INFORMATION
Commands: pct (1)

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 145

Subcommands of the pvt Command

exit Subcommand (of the pvt Command)

exit

The exit subcommand ends the command line session.

export Subcommand (of the pvt Command)

export output_file_name

The export subcommand allows you to export profile data to a specified file. The
suffix .txt will be appended to the specified file name.

The currently loaded profile data is written to the user-specified file in plain text
format, so the data can be loaded easily into a spreadsheet tool, like Lotus 1–2–3.
The data that is loaded into the tool can be grouped the following types of records:

v Profile-session records associated with each process

v Individual function or thread records

v Function statistics records.

For more information on exporting data, refer to “Exporting Profile Data” on
page 86.

load Subcommand (of the pvt Command)

load one_or_more_file_names

The load subcommand loads a set of profile data files into the session. If a set of
data already exists, then the existing data is discarded and the newly loaded data
becomes the current data to be used in future actions.

report Subcommand (of the pvt Command)

report [list | output_file_name | ″one_or_more_report_names″ output_file_name |
″one_or_more_report_ids″ output_file_name]

The report subcommand generates textual reports on the profile data. To show a list
of available report types, enter:
report list

The result of the command will look something like:

v [0] call_count: function call count report

v [1] wclock: wall clock timer report

v [2] ru_cpu: CPU usage reports

v [3] ru_mem: memory usage report

v [4] ru_paging: paging activities reports

v [5] ru_cswitch: context switch activities reports

v [6] pmc_cycle: instructions per cycle hardware counter reports

v [7] pmc_fpu: floating point hardware counter reports

IBM Confidential, Limited Rights Data

146 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

v [8] pmc_fxu: fixed-point hardware counter reports

v [9] pmc_branch: branch hardware counter reports

v [10] pmc_lsu: load and store hardware counter reports

v [11] pmc_cache: cache hardware counter reports

v [12] pmc_misc: miscellaneous hardware counter reports

For details of these reports, refer to “Generating Reports of Profile Data” on
page 81.

To generate all the available reports to a file, enter:
report output_file_name

To generate reports by report name, enter:
report "one_or_more_report_names" output_file_name

For example:
report "wclock,ru_cpu" output

To generate reports by report id, enter:
report "one_or_more_report_ids" output_file_name

For example:
report "1,2" output

The report names or report ids in double quotes must be separated by a comma
with no blank space in between. No matter how many reports are selected in one
report command, all the reports are outputted to a single file specified in the report
command.

sum Subcommand (of the pvt Command)

sum summary_file_name

The sum subcommand creates a summary file of all the loaded data. The merged
summary data is written to the file specified in the command.

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 147

slogmerge

NAME
slogmerge – Merges multiple UTE interval files into a single SLOG file.

SYNOPSIS

slogmerge [-# | -?] [-n number_of_files] [-p profile_file_name]
[-c number_of_bytes_per_frame] [-f number_of_frames_per_frame_directory]
[-o output_file_name] [-s range] [-m number_of_available_markers]
[-r factor] input_file_name_prefix

The slogmerge command merges multiple UTE interval trace files (whose names
begin with the input_file_name_prefix) into a single SLOG file. The
input_file_name_prefix must be the last item on the command line.

FLAGS
-# or -?

Prints out the usage information for the slogmerge command instead of
performing the actual merge.

-n number_of_files
Specifies the number of input UTE interval files to be merged. The default value
is 1.

-p profile_file_name
Specifies the name of the description profile. If not specified, the default profile
is the one specified by the environment variable UTE_PROFILE, or, if the
environment variable UTE_PROFILE is not set, the file profile.ute in the current
directory.

-c number_of_bytes_per_frame
Specifies the number of bytes per frame.

-f number_of_frames_per_frame_directory
Specifies the number of frames in each frame directory. When a frame directory
is exhausted, the command automatically creates an additional frame directory
and links it with existing frame directories.

-o output_file_name
Specifies the name for the output file — the merged SLOG file. If not specified,
the default value is trcfile.ute in the current directory.

-s range
Specifies a list of MPI tasks to be merges. The task IDs in the list can be
separated by either a comma (,) or a hyphen (-). If used, the hyphen represents
a range of tasks. For example, -s 0,2,4,5-7 indicates that the user wants to
merge threads with MPI task IDs 0, 2, 4, 5, 6, and 7. By default, all
tasks/threads in all UTE interval files will be merged.

-m number_of_available_markers
Specifies the number of spaces to reserve for user markers in the SLOG
interval table. The number of available markers should not be less than the
actual number of user markers in the UTE trace file, or the slogmerge utility
will quit. The default number of available markers is 20.

-r factor
specifies the factor by which spaces for ″pseudo records″ are reserved. The

IBM Confidential, Limited Rights Data

148 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

number of reserved slots for pseudo records is the number of threads in the
trace file times the factor. If not specified, the default is 2.

Pseudo records are SLOG-specific interval records that are duplicates of certain
internal records for visualization purposes. The number of pseudo records could
be fairly high, depending on the number of nested states and their time span,
and the number of internal records crossing SLOG frame boundaries in the
trace. If the number of created pseudo records is more that the reserved slots
during the merge process, the slogmerge utility will quit. If this happens, you
should specify a larger number for this option to reserve more slots for pseudo
records.

DESCRIPTION
The slogmerge command merges multiple UTE interval trace files into a single
SLOG file. A number (as indicated by the -n option) of UTE files beginning with the
input_file_name_prefix will be merged into an output file. The name of this output
file is the one specified by the -o option, or, if the -o option is not specified, the file
trcfile.ute in the current directory by default. The input_file_name_prefix must be the
last item in the command line.

ENVIRONMENT VARIABLES
UTE_PROFILE

Specifies the name of the file description profile. If not set, the file
profile.ute in the current directory is the default description profile. If the -p
option is used, its specification overrides the UTE_PROFILE environment
variable’s setting.

EXAMPLES
To merge 5 UTE interval trace files that begin with the prefix mytrace into a single
SLOG file:
slogmerge -n 5 mytrace

The above example will create an SLOG file with the default output file name
trcfile.ute. To specify your own output file name, use the -o option.
slogmerge -n 5 -o mergedtrc.ute mytrace

To additionally specify that only the MPI tasks 2, 4, and 6 through 9 should be
merged into the SLOG file, use the -s option.
slogmerge -n 5 -o mergedtrc.ute -s 2,4,6-9 mytrace

FILES
profile.ute default description profile

RELATED INFORMATION
Commands: convert (1), utemerge (1), utestats (1)

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 149

utemerge

NAME
utemerge – Merges multiple UTE interval files into a single UTE interval file.

SYNOPSIS

utemerge [-# | -?] [-n number_of_files] [-p profile_file_name]
[-c number_of_records_per_frame] [-f number_of_frames_per_frame_directory]
[-o output_file_name] [-s range] input_file_name_prefix

The utemerge command merges multiple UTE interval trace files (whose names
begin with the input_file_name_prefix) into a single UTE file. The
input_file_name_prefix must be the last item on the command line.

FLAGS
-# or -?

Prints out the usage information for the utemerge command instead of
performing the actual merge.

-n number_of_files
Specifies the number of input UTE interval files to be merged. The default value
is 1.

-p profile_file_name
Specifies the name of the description profile. If not specified, the default profile
is the one specified by the environment variable UTE_PROFILE, or, if the
environment variable UTE_PROFILE is not set, the file profile.ute in the current
directory.

-c number_of_records_per_frame
Specifies the number of bytes per frame.

-f number_of_frames_per_frame_directory
Specifies the number of frames in each frame directory. When a frame directory
is exhausted, the command automatically creates an additional frame directory
and links it with existing frame directories.

-o output_file_name
Specifies the name for the output file — the merged UTE file. If not specified,
the default value is trcfile.ute in the current directory.

-s range
Specifies a list of MPI tasks to be merges. The task IDs in the list can be
separated by either a comma (,) or a hyphen (-). If used, the hyphen represents
a range of tasks. For example, -s 0,2,4,5-7 indicates that the user wants to
merge threads with MPI task IDs 0, 2, 4, 5, 6, and 7. By default, all
tasks/threads in all UTE interval files will be merged.

DESCRIPTION
The utemerge command merges multiple UTE interval trace files into a single UTE
interval trace file. A number (as indicated by the -n option) of UTE files beginning
with the input_file_name_prefix will be merged into an output file. The name of this
output file is the one specified by the -o option, or, if the -o option is not specified,
the file trcfile.ute in the current directory by default. The input_file_name_prefix must
be the last item in the command line.

IBM Confidential, Limited Rights Data

150 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

ENVIRONMENT VARIABLES
UTE_PROFILE

Specifies the name of the file description profile. If not set, the file
profile.ute in the current directory is the default description profile. If the -p
option is used, its specification overrides the UTE_PROFILE environment
variable’s setting.

EXAMPLES
To merge 5 UTE interval trace files that begin with the prefix mytrace into a single
UTE file:
utemerge -n 5 mytrace

The above example will create a UTE file with the default output file name
trcfile.ute. To specify your own output file name, use the -o option.
utemerge -n 5 -o mergedtrc.ute mytrace

To additionally specify that only the MPI tasks 2, 4, and 6 through 9 should be
merged into the UTE file, use the -s option.
utemerge -n 5 -o mergedtrc.ute -s 2,4,6-9 mytrace

FILES
profile.ute default description profile

RELATED INFORMATION
Commands: convert (1), slogmerge (1), utestats (1)

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 151

utestats

NAME
utestats – Generates statistics tables from UTE interval files.

SYNOPSIS

utestats [-?] [-p profile_file_name] [-o output_file_name]
[-B number_of_bins] [-f table_specification_file] input_file [input_file]...

The utestats command generates statistics tables from one or more UTE interval
file. By default, six two-dimensional tables are generated. These tables are:

v Time Bin vs. Node

v Thread vs. Event Type

v Event Type vs. Thread

v Node vs. Event Type

v Event Type vs. Node

v Node vs. Processor

The computed statistic for all tables is the sum of the duration. By default, the
statistics tables will be written to standard output. You can optionally save the
statistics tables to a file using the -o flag.

FLAGS
-? Prints out the usage information for the utestats command instead of

generating statistics tables.

-p profile_file_name
Specifies the name of the description profile. If not specified, the default profile
is the one specified by the environment variable UTE_PROFILE, or, if the
environment variable is not set, the file profile.ute in the current directory.

-o output_file_name
Specifies the name of a file to which the statistics tables will be saved. If not
specified, the statistics tables will be written to standard output.

-B number_of_bins
Specifies the number of bins in the Time vs. Node table. The default is 50.

-f table_specification_file
Specifies the name of a file containing custom table specifications.

DESCRIPTION
The utestats utility is able to take individual UTE interval files or a merged UTE
interval file as input. If a number of individual UTE interval files are specified, the
timestamps in each file will start at 0 without alignment with respect to global clock
values. If, instead, a merged UTE interval file is specified, the timestamps of
records from different nodes will already have been adjusted with respect to the
global clock value.

By default, six two-dimensional tables are generated. These tables are:

v Time Bin vs. Node

v Thread vs. Event Type

IBM Confidential, Limited Rights Data

152 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

v Event Type vs. Thread (a row/column transposition of the Thread vs. Event Type
table)

v Node vs. Event Type

v Event Type vs. Node (a row/column transposition of the Node vs. Event Type
table)

v Node vs. Processor

The computed statistic for all the tables is the sum or the duration. As you can see,
several tables are simply row/column transpositions of the tables. These transposed
tables are provided so that a program used to visualize the tables does not have to
be able to transpose a table in order to show a transposed view.

The output of the utestats command is written in tab-separated-value format; each
line of output is a row of a table, and columns in a row are separated by a tab
character. Tables are separated by a Form Feed character (0x0c). This format is
used to make it easy to import a utestats output file into a spreadsheet program.

A Node vs. Processor table would look like the following (where the tabs have been
replaced by spaces to make the column alignment clearer.
node/cpu 0 1

0 2.823739 2.258315
1 0.873746 4.241253
2 0.956515 4.322891
3 0.853188 4.334650

The first value ″node/cpu″ is the name of the table. It consists of the row title
followed by a ″/″ followed by a column title. This table contains statistics aggregated
over interval records whose field values for ″node″ and ″cpu″ are the same. The
values ″node″ and ″cpu″ are the field names as stored in the UTE profile file. The
rest of the values in the first row are the column labels; these are the values that
appeared in the ″cpu″ field in at least one interval record.

With other rows, the first field is the row label; it is a value that appeared in the
node field in at least one interval record. The other fields in a row are the
accumulated duration of all interval records with the same (″node″, ″cpu″) pair of
values. For example, the accumulated duration of all interval records for ″cpu″ 1 of
″node″ 0 was 2.258315 seconds.

ENVIRONMENT VARIABLES
UTE_PROFILE

Specifies the name of the file description profile. If not set, the file
profile.ute in the current directory is the default description profile. If the -p
option is used, its specification overrides the UTE_PROFILE environment
variable’s setting.

EXAMPLES
To generate statistics tables for a single UTE interval file:
utestats mytrace.ute

The above example will write the statistics tables to standard output. To redirect the
output to a file, use the -o option.
utestats -o stattables mytrace.ute

You can also specify multiple UTE interval files from which statistics should be
generated.

IBM Confidential, Limited Rights Data

Appendix B. PE Benchmarker Command Reference 153

utestats mytrace.ute mytrace2.ute mytrace3.ute

FILES
profile.ute default description profile

RELATED INFORMATION
Commands: convert (1), utemerge (1)

IBM Confidential, Limited Rights Data

154 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Appendix C. PE Benchmarker Messages

2554–002 Internal error from number.

Explanation: An internal error was found at the
specified line number.

User Response: Gather information about the
problem and follow local site procedures for reporting
hardware and software problems.

2554–003 Syntax error, near string.

Explanation: A syntax error was found near the
location of the command.

User Response: Correct the input command and retry.

2554–004 Duplicate keyword string found.

Explanation: The command keyword was repeated
more than one time.

User Response: Correct the error and retry.

2554–005 Connect command has both all and
task/group qualifier.

Explanation: Both the all and task group qualifiers
are present with the connect command.

User Response: Remove either the all or task
qualifier.

2554–006 The task does not exist, is in an
inappropriate state, or does not
contain the data requested.

Explanation: There was an attempt to retrieve data,
that is, a file id, on a task that either does not exist or
does not have the data requested. Also, the task could
be in a state that does not allow the specified action,
such as a disconnected task trying to be destroyed. You
can destroy the target if disconnected, but cannot
specify individual tasks.

User Response: Try a different task and/or different
data.

2554–007 Group name string is not defined.

Explanation: The specified group name is not defined.

User Response: Use show groups to find all the
defined groups.

2554–008 Group name string is empty.

Explanation: The specified group name is empty.

User Response: Enter some tasks into the specified
group.

2554–009 Cannot find the default group or the
default group is empty.

Explanation: The default group could not be found, or
the default group is empty.

User Response: If the application is not connected,
connect to it. Run the show group command to see the
tasks.

2554–010 Session needs to connect or load
before running the command.

Explanation: The session is not connected to any
application.

User Response: Correct the error and retry.

2554–011 Ais_status failure code number.

Explanation: DPCL returned a bad status.

User Response: Check the DPCL reference menu.

2554–012 Cannot modify predefined group name
string.

Explanation: The group name is a predefined name.
Tasks cannot be added or removed.

User Response: Use the connect or disconnect
command to add or remove tasks in the connected
group.

2554–013 The target has completed or has been
killed on its own.

Explanation: The target has either completed or has
been stopped using <Ctrl-C> . Also the target may have
been destroyed in some other manner, external to the
tool.

User Response: You must load or connect to a new
target before doing any more work.

2554–014 The command failed to allocate
enough memory for its use.

Explanation: The current command failed to allocate
memory.

User Response: Check the system memory usage,
page space, etc.

2554–021 Session is already connected to an
application.

Explanation: The session is already connected to an
application.

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 155

User Response: Correct the error and retry.

2554–022 Cannot disconnect number.

Explanation: Cannot disconnect the task.

User Response: Check the task number; it must be
connected or suspended.

2554–023 pid number specified is not valid.

Explanation: The process id (pid) is not valid.

User Response: Double check the pid.

2554–024 All tasks in this command are already
connected.

Explanation: All tasks in the connect command are
already connected; or there was an attempt to connect
an empty group.

User Response: Correct the error and retry.

2554–025 pid number specified is not a valid poe
pid.

Explanation: The process id (pid) is not a valid poe
pid.

User Response: Double check the pid.

2554–026 Cannot find the string to help.

Explanation: Cannot find the help information for the
specified name.

User Response: Check the name type.

2554–027 Help is not available in the beta
release.

Explanation: Cannot find the help information in the
beta release.

User Response: None.

2554–031 Cannot suspend number.

Explanation: Cannot suspend the task.

User Response: Check the task number; it must be
connected or loaded.

2554–033 Cannot resume number.

Explanation: Cannot resume the task.

User Response: Check the task number; it must be
suspended.

2554–036 No connected target.

Explanation: There is no target for you to destroy.

User Response: Connect to a target.

2554–038 The target was not loaded.

Explanation: The target was connected to “not
created”.

User Response: Do not try to start this target.

2554–041 The stdin command input is not valid.

Explanation: The text part of the stdin command is
not valid.

User Response: Check the input text; it must be a
quoted string.

2554–042 The application loaded cannot take
stdin as input.

Explanation: The application loaded reads the stdin
from a file.

User Response: If the application needs to read the
input from user input, remove the stdin clause from the
load command.

2554–043 The user closed STDIN already.

Explanation: The user has closed stdin.

User Response: The user cannot close stdin if more
input is expected.

2554–051 No file_spec was provided.

Explanation: No file_spec was given for a command
that requires it.

User Response: Type file regexp where regexp is a
regular expression such as “*”.

2554–052 Session loaded with string already.

Explanation: The session loaded a tool.

User Response: Use a separate session.

2554–053 Tool name string is not a valid tool
name.

Explanation: The tool is not a valid name.

User Response: Use show tools to find all the
defined tools.

IBM Confidential, Limited Rights Data

156 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

2554–054 Tool string failed to load.

Explanation: The tool specified in the tool name field
failed to load.

User Response: Report the failure to the owner of the
tool.

2554–055 Tool string failed to initialize.

Explanation: The tool specified in the tool name field
failed to initialize properly.

User Response: Report the failure to the owner of the
tool.

2554–060 The file id string provided is invalid.

Explanation: The file id provided does not exist.

User Response: Enter a different file id. Use the file
command to find a list of valid file ids.

2554–061 The function id string provided is
invalid.

Explanation: The function id provided does not exist.

User Response: Enter a different function id. Use the
function command to find a list of valid function ids.

2554–062 End of File.

Explanation: The end of the file was reached.

User Response: State an earlier line.

2554–063 File string was not found.

Explanation: The file specified was not found.

User Response: State a different file name.

2554–064 Function string was not found.

Explanation: The function specified was not found.

User Response: State a different function name.

2554–065 The first line specified is invalid.

Explanation: The file does not have this many lines.

User Response: Enter a smaller line number. The
number must be positive, that is, greater than 0.

2554–066 The last line specified is invalid.

Explanation: The file does not have this many lines.

User Response: Enter a smaller line number. The
number must be positive, that is, greater than 0, and
must be greater than or equal to the start line.

2554–067 No path was set.

Explanation: The path was not yet set. The default
path is the current directory.

User Response: Issue a set sourcepath.

2554–068 No previous file set for this command.

Explanation: There is no previous file set for this
command.

User Response: Use the list file command before the
list next call.

2554–076 File string failed to open.

Explanation: The file specified cannot be opened.

User Response: Check to see if the user has
permission to open the file to write.

2554–076 File string failed to write.

Explanation: The file specified cannot be written to.

User Response: Check to see if the file system has
sufficient disk space to write.

2554–080 poeargs was specified but not poe.

Explanation: The user tried to specify the poeargs
argument for a job that was not a poe .

User Response: If the job is supposed to be a poe ,
type poe on the line; if not, do not use poeargs .

2554–081 load command needs an exec clause
or mpmdcmd clause to specify
program to load.

Explanation: There is no program specified to attempt
to load.

User Response: Try load again; this time with an
exec clause or mpmdcmd clause.

2554–082 load failed.

Explanation: PE Benchmarker was unable to load the
program specified.

User Response: Make sure the correct path was
specified, that the program is the correct one, and if
poe , that either environment variables are set or you
specify poeargs .

2554–083 load command cannot have both exec
clause and mpmdcmd clause.

Explanation: You cannot specify both the exec clause
and the mpmdcmd clause with the load command.

User Response: Try load again; this time with only an

IBM Confidential, Limited Rights Data

Appendix C. PE Benchmarker Messages 157

exec clause or an mpmdcmd clause.

2554–084 mpmdcmd clause also requires poe
keyword.

Explanation: The load mpmdcmd command requires
the poe keyword.

User Response: Try load again; this time with the
poe keyword.

2554–085 Different version between tool and
application.

Explanation: The tool and the target application do
not have the same version.

User Response: Recompile the application.

2554–086 string is not a full path.

Explanation: The specified path is not a full path.

User Response: Use the full path name.

2554–201 Path name not set.

Explanation: The path name is not set yet.

User Response: Set the path name.

2554–202 Excessive probe data size: number.

Explanation: The size of the probe data memory is
too large to allocate.

User Response: Try using a smaller amount.

2554–203 Error has occurred while updating MPI
Event masks.

Explanation: One of the probe expressions executed
failed.

2554–204 Error has occurred while installing and
activating probes.

Explanation: One or more of the probe installations or
activations failed.

2554–205 The probe id: number is out of range.

Explanation: The probe id is either less than 0 or
greater than the number of probes.

User Response: List the probes to see how many
there are and choose a valid id.

2554–206 The task id: number has previous
errors.

Explanation: The task id has had an AisStatus error
on a previous add.

User Response: Use a different task or restart the
tool.

2554–207 Invalid probe path: string.

Explanation: The path assigned via the set path
command is invalid for a given task.

User Response: Make sure the directory exists.

2554–221 Invalid keyword string found in trace
help command.

Explanation: Invalid help keyword.

User Response: Check the input text.

2554–231 Event string is unknown to the
command.

Explanation: The event name specified is unknown to
this command. No events are set.

User Response: Provide a valid event name.

2554–232 bufsize specified number is outside the
valid range minimum number —
maximum number.

Explanation: The size specified is invalid.

User Response: Provide a valid size.

2554–233 logsize specified number is outside the
valid range minimum number —
maximum number.

Explanation: The size specified is invalid.

User Response: Provide a valid size.

2554–234 Path string is invalid.

Explanation: The path specified is invalid.

User Response: Provide a valid path.

2554–241 No functions were found to meet any
of the expressions provided.

Explanation: Unlike specific function ids or ranges, an
expression may match nothing and will not produce an
error in the internal functions. For the adding of probes
and markers, this is invalid. Therefore, if not even one
function from any function expression provided
produces a match, and a valid function id is provided,
then the add command itself will produce this generic
message.

IBM Confidential, Limited Rights Data

158 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

User Response: Provide a valid file id/expression and
a valid function id/expression. Use the file , function ,
and point commands to find out what is and is not
valid.

2554–251 More than one instrumentation point
can be derived from this command.

Explanation: Only one instrumentation point can occur
in one add marker command.

User Response: Check the input text and remove the
extra files or functions, especially if a regular expression
is involved.

2554–252 No instrumentation point can be
derived from this command.

Explanation: Only one instrumentation point can occur
in one add marker command.

User Response: Check the input text, or use the
point command to find all the available points.

2554–253 No matching marker name string found
from previous commands.

Explanation: The marker name must be paired with
the previous beginmarker .

User Response: Issue trace show markers to see all
the previous defined markers.

2554–254 No marker name found in the
command.

Explanation: Missing marker name for beginmarker
and endmarker .

User Response: Add the name.

2554–255 Different tasks between beginmarker
and endmarker.

Explanation: Tasks are mismatched for beginmarker
and endmarker .

User Response: Match the tasks.

2554–255 Duplicate name string found in marker
id number.

Explanation: A duplicate name was found in the
previously defined marker.

User Response: Change the name.

2554–256 Invalid marker name found.

Explanation: The marker name contains unprintable
characters.

User Response: Change the name.

2554–261 Marker id number is invalid.

Explanation: The marker id specified is not valid.

User Response: Issue trace show markers to find all
the valid marker ids.

2554–262 Marker id number is already removed.

Explanation: The marker id specified is already
removed.

User Response: Issue trace show markers to find all
the valid marker ids.

2554–301 Path name not set.

Explanation: The path name is not set yet.

User Response: Set the path name.

2554–204 The task id: number has previous
errors.

Explanation: The task id has had an AisStatus error
on a previous add.

User Response: Use a different task or restart the
tool.

2554–321 Invalid keyword string found in trace
help command.

Explanation: Invalid help keyword.

User Response: Check the input text.

2554–326 ProfName string is unknown to this cpu
type.

Explanation: The ProfName used in this show
probetype command is not valid.

User Response: Use the show probetypes
command to find a valid name.

2554–341 ProfId or ProfName is not valid in this
cpu type.

Explanation: The ProfId or ProfName used in this add
command is not valid.

User Response: Make sure the tasks do not have
mixed cpu type.

2554–342 Option part of the command is not
valid in this ProfType.

Explanation: The Option part of the command is not
valid for the ProfType.

User Response: Make sure the option specified is
valid.

IBM Confidential, Limited Rights Data

Appendix C. PE Benchmarker Messages 159

2554–343 ProfId has been specified, only one
option is allowed.

Explanation: Only one ProfId/Option pair is allowed in
the command.

User Response: Remove the duplicates.

2554–344 Some functions are profiled in the
probe id number, duplication is not
allowed.

Explanation: Some of the functions are profiled in the
previous command. Duplication is not allowed.

User Response: Use the show probes command to
examine the command in question.

2554–345 Task number has different probe type
specified.

Explanation: The task id had been used before with a
different probe type. Only one probe type can be used
in a profile session.

User Response: The user needs to plan ahead on
what profile type to monitor, and use that type across
the profiling session.

2554–346 There is no function in the specified
file and function combination.

Explanation: The specified file and function
combination generates an empty result.

User Response: Use the function command to verify
the function list.

2554–347 Too many files/functions in the add
command.

Explanation: The number of functions that can be
added in a single add command is 200.

User Response: Separate the command into two.

2554–348 Name string is unknown to the
command.

Explanation: The event name specified is unknown to
the add command.

User Response: Type the correct name.

2554–349 At least one task number does not have
PMAPI installed.

Explanation: The host which runs the specified task id
does not have PMAPI installed and cannot collect the
hardware counter event information.

User Response: Install the PMAPI on the node.

2554–351 No previous added profile to be
removed.

Explanation: There is no previous added profile to be
removed.

User Response: Issue the add command before the
remove command.

2554–352 The range started from number is too
big.

Explanation: The range specified is outside the
boundary of the added profile.

User Response: Issue show probes to see the list of
profiles.

IBM Confidential, Limited Rights Data

160 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may be
used instead. However, it is the user’s responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you any
license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other country
where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply to
you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements and/or
changes in the product(s) and/or the program(s) described in this publication at any
time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those
Web sites. The materials at those Web sites are not part of the materials for this
IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes
appropriate without incurring any obligation to you.

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 161

Licensees of this program who wish to have information about it for the purpose of
enabling: (i) the exchange of information between independently created programs
and other programs (including this one) and (ii) the mutual use of the information
which has been exchanged, should contact:

IBM Corporation
Department LJEB/P905
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available
for it are provided by IBM under terms of the IBM Customer Agreement, IBM
International Program License Agreement or any equivalent agreement between us.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to IBM,
for the purposes of developing, using, marketing or distributing application programs
conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly
tested under all conditions. IBM, therefore, cannot guarantee or imply reliability,
serviceability, or function of these programs. You may copy, modify, and distribute
these sample programs in any form without payment to IBM for the purposes of
developing, using, marketing, or distributing application programs conforming to
IBM’s application programming interfaces.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_. All rights
reserved.

If you are viewing this information softcopy, the photographs and color illustrations
may not appear.

Trademarks
The following terms are trademarks of the International Business Machines
Corporation in the United States or other countries or both:

AIX
ESCON
IBM
IBMLink
LoadLeveler

IBM Confidential, Limited Rights Data

162 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Micro Channel
RS/6000
RS/6000 SP

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, BackOffice, MS-DOS, and the Windows logo are
trademarks or registered trademarks of Microsoft Corporation in the United States,
other countries, or both.

Pentium and Pentium II Xeon are trademarks or registered trademarks of Intel
Corporation in the United States, other countries, or both.

Tivoli Enterprise Console is a trademark of Tivoli Systems Inc. in the United States,
other countries, or both.

UNIX is a registered trademark in the United States, other countries, or both and is
licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be the trademarks or service
marks of others.

Acknowledgements
This product includes software developed by the Apache Software Foundation
(http://www.apache.org).

IBM Confidential, Limited Rights Data

Notices 163

IBM Confidential, Limited Rights Data

164 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Glossary of Terms and Abbreviations

This glossary includes terms and definitions from:

v The Dictionary of Computing , New York:
McGraw-Hill, 1994.

v The American National Standard Dictionary for
Information Systems , ANSI X3.172-1990,
copyright 1990 by the American National
Standards Institute (ANSI). Copies can be
purchased from the American National
Standards Institute, 1430 Broadway, New York,
New York 10018. Definitions are identified by
the symbol (A) after the definition.

v The ANSI/EIA Standard - 440A: Fiber Optic
Terminology, copyright 1989 by the Electronics
Industries Association (EIA). Copies can be
purchased from the Electronic Industries
Association, 2001 Pennsylvania Avenue N.W.,
Washington, D.C. 20006. Definitions are
identified by the symbol (E) after the definition.

v The Information Technology Vocabulary
developed by Subcommittee 1, Joint Technical
Committee 1, of the International Organization
for Standardization and the International
Electrotechnical Commission (ISO/IEC
JTC1/SC1). Definitions of published parts of this
vocabulary are identified by the symbol (I) after
the definition; definitions taken from draft
international standards, committee drafts, and
working papers being developed by ISO/IEC
JTC1/SC1 are identified by the symbol (T) after
the definition, indicating that final agreement
has not yet been reached among the
participating National Bodies of SC1.

This section contains some of the terms that are
commonly used in the Parallel Environment books
and in this book in particular.

IBM is grateful to the American National Standards
Institute (ANSI) for permission to reprint its
definitions from the American National Standard
Vocabulary for Information Processing (Copyright
1970 by American National Standards Institute,
Incorporated), which was prepared by
Subcommittee X3K5 on Terminology and Glossary
of the American National Standards Committee
X3. ANSI definitions are preceded by an asterisk
(*).

Other definitions in this glossary are taken from
IBM Vocabulary for Data Processing,
Telecommunications, and Office Systems
(GC20-1699).

A
address. A value, possibly a character or group of
characters that identifies a register, a device, a
particular part of storage, or some other data source or
destination.

AIX. Abbreviation for Advanced Interactive Executive,
IBM’s licensed version of the UNIX operating system.
AIX is particularly suited to support technical computing
applications, including high function graphics and
floating point computations.

AIXwindows Environment/6000. A graphical user
interface (GUI) for the RS/6000. It has the following
components:
v A graphical user interface and toolkit based on

OSF/Motif
v Enhanced X-Windows, an enhanced version of the

MIT X Window System
v Graphics Library (GL), a graphical interface library for

the applications programmer which is compatible with
Silicon Graphics’ GL interface.

API. Application Programming Interface.

application. The use to which a data processing
system is put; for example, topayroll application, an
airline reservation application.

argument. A parameter passed between a calling
program and a called program or subprogram.

attribute. A named property of an entity.

B
bandwidth. The total available bit rate of a digital
channel.

blocking operation. An operation which does not
complete until the operation either succeeds or fails. For
example, a blocking receive will not return until a
message is received or until the channel is closed and
no further messages can be received.

breakpoint. A place in a program, specified by a
command or a condition, where the system halts
execution and gives control to the workstation user or to
a specified program.

broadcast operation. A communication operation in
which one processor sends (or broadcasts) a message
to all other processors.

buffer. A portion of storage used to hold input or
output data temporarily.

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 165

C
C. A general purpose programming language. It was
formalized by ANSI standards committee for the C
language in 1984 and by Uniforum in 1983.

C++. A general purpose programming language, based
on C, which includes extensions that support an
object-oriented programming paradigm. Extensions
include:
v strong typing
v data abstraction and encapsulation
v polymorphism through function overloading and

templates
v class inheritance.

call arc. The representation of a call between two
functions within the Xprofiler function call tree. It
appears as a solid line between the two functions. The
arrowhead indicates the direction of the call; the
function it points to is the one that receives the call. The
function making the call is known as the caller, while the
function receiving the call is known as the callee.

chaotic relaxation. An iterative relaxation method
which uses a combination of the Gauss-Seidel and
Jacobi-Seidel methods. The array of discrete values is
divided into sub-regions which can be operated on in
parallel. The sub-region boundaries are calculated using
Jacobi-Seidel, whereas the sub-region interiors are
calculated using Gauss-Seidel. See also Gauss-Seidel.

client. A function that requests services from a server,
and makes them available to the user.

cluster. A group of processors interconnected through
a high speed network that can be used for high
performance computing. It typically provides excellent
price/performance.

collective communication. A communication
operation which involves more than two processes or
tasks. Broadcasts, reductions, and the MPI_Allreduce
subroutine are all examples of collective communication
operations. All tasks in a communicator must participate.

command alias. When using the PE command line
debugger, pdbx, you can create abbreviations for
existing commands using the pdbx alias command.
These abbreviations are know as command aliases.

Communication Subsystem (CSS). A component of
the IBM Parallel System Support Programs for AIX that
provides software support for the High Performance
Switch. It provides two protocols; IP (Internet Protocol)
for LAN based communication and US (user space) as
a message passing interface that is optimized for
performance over the switch. See also Internet Protocol
and User Space.

communicator. An MPI object that describes the
communication context and an associated group of
processes.

compile. To translate a source program into an
executable program.

condition. One of a set of specified values that a data
item can assume.

control workstation. A workstation attached to the
RS/6000 SP that serves as a single point of control
allowing the administrator or operator to monitor and
manage the system using IBM Parallel System Support
Programs for AIX.

core dump. A process by which the current state of a
program is preserved in a file. Core dumps are usually
associated with programs that have encountered an
unexpected, system-detected fault, such as a
Segmentation Fault, or severe user error. The current
program state is needed for the programmer to
diagnose and correct the problem.

core file. A file which preserves the state of a
program, usually just before a program is terminated for
an unexpected error. See also core dump.

current context. When using either of the PE parallel
debuggers, control of the parallel program and the
display of its data can be limited to a subset of the
tasks that belong to that program. This subset of tasks
is called the current context. You can set the current
context to be a single task, multiple tasks, or all the
tasks in the program.

D
data decomposition. A method of breaking up (or
decomposing) a program into smaller parts to exploit
parallelism. One divides the program by dividing the
data (usually arrays) into smaller parts and operating on
each part independently.

data parallelism. Refers to situations where parallel
tasks perform the same computation on different sets of
data.

dbx. A symbolic command line debugger that is often
provided with UNIX systems. The PE command line
debugger, pdbx , is based on the dbx debugger.

debugger. A debugger provides an environment in
which you can manually control the execution of a
program. It also provides the ability to display the
program’s data and operation.

distributed shell (dsh). An IBM Parallel System
Support Programs for AIX command that lets you issue
commands to a group of hosts in parallel. See the IBM

IBM Confidential, Limited Rights Data

166 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

RISC System/6000 Scalable POWERparallel Systems:
Command and Technical Reference (GC23-3900-00) for
details.

domain name. The hierarchical identification of a host
system (in a network), consisting of human-readable
labels, separated by decimals.

E
environment variable. 1. A variable that describes the
operating environment of the process. Common
environment variables describe the home directory,
command search path, and the current time zone. 2. A
variable that is included in the current software
environment and is therefore available to any called
program that requests it.

event. An occurrence of significance to a task; for
example, the completion of an asynchronous operation
such as an input/output operation.

Ethernet. Ethernet is the standard hardware for
TCP/IP LANs in the UNIX marketplace. It is a 10
megabit per second baseband type network that uses
the contention based CSMA/CD (collision detect) media
access method.

executable. A program that has been link-edited and
therefore can be run in a processor.

execution. To perform the actions specified by a
program or a portion of a program.

expression. In programming languages, a language
construct for computing a value from one or more
operands.

F
fairness. A policy in which tasks, threads, or
processes must be allowed eventual access to a
resource for which they are competing. For example, if
multiple threads are simultaneously seeking a lock, then
no set of circumstances can cause any thread to wait
indefinitely for access to the lock.

FDDI. Fiber distributed data interface (100 Mbit/s fiber
optic LAN).

file system. In the AIX operating system, the collection
of files and file management structures on a physical or
logical mass storage device, such as a diskette or
minidisk.

fileset. 1) An individually installable option or update.
Options provide specific function while updates correct
an error in, or enhance, a previously installed product.
2) One or more separately installable, logically grouped
units in an installation package. See also Licensed
Program Product and package.

foreign host. See remote host.

Fortran. One of the oldest of the modern programming
languages, and the most popular language for scientific
and engineering computations. It’s name is a
contraction of FORmula TRANslation. The two most
common Fortran versions are Fortran 77, originally
standardized in 1978, and Fortran 90. Fortran 77 is a
proper subset of Fortran 90.

function call tree. A graphical representation of all the
functions and calls within an application, which appears
in the Xprofiler main window. The functions are
represented by green, solid-filled rectangles called
function boxes. The size and shape of each function
box indicates its CPU usage. Calls between functions
are represented by blue arrows, called call arcs, drawn
between the function boxes. See also call arcs.

function cycle. A chain of calls in which the first caller
is also the last to be called. A function that calls itself
recursively is not considered a function cycle.

functional decomposition. A method of dividing the
work in a program to exploit parallelism. One divides the
program into independent pieces of functionality which
are distributed to independent processors. This is in
contrast to data decomposition which distributes the
same work over different data to independent
processors.

functional parallelism. Refers to situations where
parallel tasks specialize in particular work.

G
Gauss-Seidel. An iterative relaxation method for
solving Laplace’s equation. It calculates the general
solution by finding particular solutions to a set of
discrete points distributed throughout the area in
question. The values of the individual points are
obtained by averaging the values of nearby points.
Gauss-Seidel differs from Jacobi-Seidel in that for the
i+1st iteration Jacobi-Seidel uses only values calculated
in the ith iteration. Gauss-Seidel uses a mixture of
values calculated in the ith and i+1st iterations.

global max. The maximum value across all
processors for a given variable. It is global in the sense
that it is global to the available processors.

global variable. A variable defined in one portion of a
computer program and used in at least one other
portion of the computer program.

gprof. A UNIX command that produces an execution
profile of C, Pascal, Fortran, or COBOL programs. The
execution profile is in a textual and tabular format. It is
useful for identifying which routines use the most CPU
time. See the man page on gprof .

IBM Confidential, Limited Rights Data

Glossary of Terms and Abbreviations 167

GUI (Graphical User Interface). A type of computer
interface consisting of a visual metaphor of a real-world
scene, often of a desktop. Within that scene are icons,
representing actual objects, that the user can access
and manipulate with a pointing device.

H
High Performance Switch. The high-performance
message passing network, of the RS/6000 SP(SP)
machine, that connects all processor nodes.

HIPPI. High performance parallel interface.

hook. hook is a pdbx command that allows you to
re-establish control over all task(s) in the current context
that were previously unhooked with this command.

home node. The node from which an application
developer compiles and runs his program. The home
node can be any workstation on the LAN.

host. A computer connected to a network, and
providing an access method to that network. A host
provides end-user services.

host list file. A file that contains a list of host names,
and possibly other information, that was defined by the
application which reads it.

host name. The name used to uniquely identify any
computer on a network.

hot spot. A memory location or synchronization
resource for which multiple processors compete
excessively. This competition can cause a
disproportionately large performance degradation when
one processor that seeks the resource blocks,
preventing many other processors from having it,
thereby forcing them to become idle.

I
IBM Parallel Environment for AIX. A program product
that provides an execution and development
environment for parallel Fortran, C, or C++ programs. It
also includes tools for debugging, profiling, and tuning
parallel programs.

installation image. A file or collection of files that are
required in order to install a software product on a
RS/6000 workstation or on SP system nodes. These
files are in a form that allows them to be installed or
removed with the AIX installp command. See also
fileset, Licensed Program Product, and package.

Internet. The collection of worldwide networks and
gateways which function as a single, cooperative virtual
network.

Internet Protocol (IP). 1) The TCP/IP protocol that
provides packet delivery between the hardware and

user processes. 2) The High Performance Switch
library, provided with the IBM Parallel System Support
Programs for AIX, that follows the IP protocol of TCP/IP.

IP. See Internet Protocol.

J
Jacobi-Seidel. See Gauss-Seidel.

job management system.

The software you use to manage the jobs across your
system, based on the availability and state of system
resources.

K
Kerberos. A publicly available security and
authentication product that works with the IBM Parallel
System Support Programs for AIX software to
authenticate the execution of remote commands.

kernel. The core portion of the UNIX operating system
which controls the resources of the CPU and allocates
them to the users. The kernel is memory-resident, is
said to run in kernel mode (in other words, at higher
execution priority level than user mode) and is protected
from user tampering by the hardware.

L
Laplace’s equation. A homogeneous partial
differential equation used to describe heat transfer,
electric fields, and many other applications.

latency. The time interval between the instant at which
an instruction control unit initiates a call for data
transmission, and the instant at which the actual
transfer of data (or receipt of data at the remote end)
begins. Latency is related to the hardware
characteristics of the system and to the different layers
of software that are involved in initiating the task of
packing and transmitting the data.

Licensed Program Product (LPP). A collection of
software packages, sold as a product, that customers
pay for to license. It can consist of packages and
filesets a customer would install. These packages and
filesets bear a copyright and are offered under the
terms and conditions of a licensing agreement. See also
fileset and package.

LoadLeveler. A job management system that works
with POE to allow users to run jobs and match
processing needs with system resources, in order to
better utilize the system.

local variable. A variable that is defined and used
only in one specified portion of a computer program.

IBM Confidential, Limited Rights Data

168 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

loop unrolling. A program transformation which
makes multiple copies of the body of a loop, placing the
copies also within the body of the loop. The loop trip
count and index are adjusted appropriately so the new
loop computes the same values as the original. This
transformation makes it possible for a compiler to take
additional advantage of instruction pipelining, data
cache effects, and software pipelining.

See also optimization.

M
menu. A list of options displayed to the user by a data
processing system, from which the user can select an
action to be initiated.

message catalog. A file created using the AIX
Message Facility from a message source file that
contains application error and other messages, which
can later be translated into other languages without
having to recompile the application source code.

message passing. Refers to the process by which
parallel tasks explicitly exchange program data.

MIMD (Multiple Instruction Multiple Data). A parallel
programming model in which different processors
perform different instructions on different sets of data.

MPMD (Multiple Program Multiple Data). A parallel
programming model in which different, but related,
programs are run on different sets of data.

MPI. Message Passing Interface; a standardized API
for implementing the message passing model.

N
network. An interconnected group of nodes, lines, and
terminals. A network provides the ability to transmit data
to and receive data from other systems and users.

node. (1) In a network, the point where one or more
functional units interconnect transmission lines. A
computer location defined in a network. (2) In terms of
the RS/6000 SP, a single location or workstation in a
network. An SP node is a physical entity (a processor).

node ID. A string of unique characters that identifies
the node on a network.

nonblocking operation. An operation, such as
sending or receiving a message, which returns
immediately whether or not the operation was
completed. For example, a nonblocking receive will not
wait until a message is sent, but a blocking receive will
wait. A nonblocking receive will return a status value
that indicates whether or not a message was received.

O
object code. The result of translating a computer
program to a relocatable, low-level form. Object code
contains machine instructions, but symbol names (such
as array, scalar, and procedure names), are not yet
given a location in memory.

optimization. A not strictly accurate but widely used
term for program performance improvement, especially
for performance improvement done by a compiler or
other program translation software. An optimizing
compiler is one that performs extensive code
transformations in order to obtain an executable that
runs faster but gives the same answer as the original.
Such code transformations, however, can make code
debugging and performance analysis very difficult
because complex code transformations obscure the
correspondence between compiled and original source
code.

option flag. Arguments or any other additional
information that a user specifies with a program name.
Also referred to as parameters or command line
options.

P
package. A number of filesets that have been
collected into a single installable image of program
products, or LPPs. Multiple filesets can be bundled
together for installing groups of software together. See
also fileset and Licensed Program Product.

parallelism. The degree to which parts of a program
may be concurrently executed.

parallelize. To convert a serial program for parallel
execution.

Parallel Operating Environment (POE). An execution
environment that smooths the differences between
serial and parallel execution. It lets you submit and
manage parallel jobs. It is abbreviated and commonly
known as POE.

parameter. * (1) In Fortran, a symbol that is given a
constant value for a specified application. (2) An item in
a menu for which the operator specifies a value or for
which the system provides a value when the menu is
interpreted. (3) A name in a procedure that is used to
refer to an argument that is passed to the procedure.
(4) A particular piece of information that a system or
application program needs to process a request.

partition. (1) A fixed-size division of storage. (2) In
terms of the RS/6000 SP, a logical definition of nodes to
be viewed as one system or domain. System
partitioning is a method of organizing the SP into groups
of nodes for testing or running different levels of
software of product environments.

IBM Confidential, Limited Rights Data

Glossary of Terms and Abbreviations 169

Partition Manager. The component of the Parallel
Operating Environment (POE) that allocates nodes, sets
up the execution environment for remote tasks, and
manages distribution or collection of standard input
(STDIN), standard output (STDOUT), and standard error
(STDERR).

pdbx. pdbx is the parallel, symbolic command line
debugging facility of PE. pdbx is based on the dbx
debugger and has a similar interface.

PE. The IBM Parallel Environment for AIX program
product.

performance monitor. A utility which displays how
effectively a system is being used by programs.

POE. See Parallel Operating Environment.

pool. Groups of nodes on an SP that are known to the
Resource Manager, and are identified by a number.

point-to-point communication. A communication
operation which involves exactly two processes or
tasks. One process initiates the communication through
a send operation. The partner process issues a receive
operation to accept the data being sent.

procedure. (1) In a programming language, a block,
with or without formal parameters, whose execution is
invoked by means of a procedure call. (2) A set of
related control statements that cause one or more
programs to be performed.

process. A program or command that is actually
running the computer. It consists of a loaded version of
the executable file, its data, its stack, and its kernel data
structures that represent the process’s state within a
multitasking environment. The executable file contains
the machine instructions (and any calls to shared
objects) that will be executed by the hardware. A
process can contain multiple threads of execution.

The process is created via a fork () system call and
ends using an exit () system call. Between fork and
exit , the process is known to the system by a unique
process identifier (pid).

Each process has its own virtual memory space and
cannot access another process’s memory directly.
Communication methods across processes include
pipes, sockets, shared memory, and message passing.

prof. A utility which produces an execution profile of
an application or program. It is useful to identifying
which routines use the most CPU time. See the man
page for prof .

profiling. The act of determining how much CPU time
is used by each function or subroutine in a program.
The histogram or table produced is called the execution
profile.

Program Marker Array. An X-Windows run time
monitor tool provided with Parallel Operating
Environment, used to provide immediate visual
feedback on a program’s execution.

pthread. A thread that conforms to the POSIX Threads
Programming Model.

R
reduction operation. An operation, usually
mathematical, which reduces a collection of data by one
or more dimensions. For example, the arithmetic SUM
operation is a reduction operation which reduces an
array to a scalar value. Other reduction operations
include MAXVAL and MINVAL.

remote host. Any host on a network except the one at
which a particular operator is working.

remote shell (rsh). A command supplied with both AIX
and the IBM Parallel System Support Programs for AIX
that lets you issue commands on a remote host.

Report. In Xprofiler, a tabular listing of performance
data that is derived from the gmon.out files of an
application. There are five types of reports that are
generated by Xprofiler, and each one presents different
statistical information for an application.

Resource Manager. A server that runs on one of the
nodes of an RS/6000 SP (SP) machine. It prevents
parallel jobs from interfering with each other, and
reports job-related node information.

RISC. Reduced Instruction Set Computing (RISC), the
technology for today’s high performance personal
computers and workstations, was invented in 1975.

S
shell script. A sequence of commands that are to be
executed by a shell interpreter such as C shell, korn
shell, or Bourne shell. Script commands are stored in a
file in the same form as if they were typed at a terminal.

segmentation fault. A system-detected error, usually
caused by referencing an invalid memory address.

server. A functional unit that provides shared services
to workstations over a network; for example, a file
server, a print server, a mail server.

signal handling. A type of communication that is used
by message passing libraries. Signal handling involves
using AIX signals as an asynchronous way to move
data in and out of message buffers.

source line. A line of source code.

source code. The input to a compiler or assembler,
written in a source language. Contrast with object code.

IBM Confidential, Limited Rights Data

170 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

SP. RS/6000 SP; a scalable system from two to 128
processor nodes, arranged in various physical
configurations, that provides a high powered computing
environment.

SPMD (Single Program Multiple Data). A parallel
programming model in which different processors
execute the same program on different sets of data.

standard input (STDIN). In the AIX operating system,
the primary source of data entered into a command.
Standard input comes from the keyboard unless
redirection or piping is used, in which case standard
input can be from a file or the output from another
command.

standard output (STDOUT). In the AIX operating
system, the primary destination of data produced by a
command. Standard output goes to the display unless
redirection or piping is used, in which case standard
output can go to a file or to another command.

stencil. A pattern of memory references used for
averaging. A 4-point stencil in two dimensions for a
given array cell, x(i,j), uses the four adjacent cells,
x(i-1,j), x(i+1,j), x(i,j-1), and x(i,j+1).

subroutine. (1) A sequence of instructions whose
execution is invoked by a call. (2) A sequenced set of
instructions or statements that may be used in one or
more computer programs and at one or more points in a
computer program. (3) A group of instructions that can
be part of another routine or can be called by another
program or routine.

synchronization. The action of forcing certain points
in the execution sequences of two or more
asynchronous procedures to coincide in time.

system administrator. (1) The person at a computer
installation who designs, controls, and manages the use
of the computer system. (2) The person who is
responsible for setting up, modifying, and maintaining
the Parallel Environment.

System Data Repository. A component of the IBM
Parallel System Support Programs for AIX software that
provides configuration management for the SP system.
It manages the storage and retrieval of system data
across the control workstation, file servers, and nodes.

System Status Array. An X-Windows run time monitor
tool, provided with the Parallel Operating Environment,
that lets you quickly survey the utilization of processor
nodes.

T
task. A unit of computation analogous to an AIX
process.

thread. A single, separately dispatchable, unit of
execution. There may be one or more threads in a
process, and each thread is executed by the operating
system concurrently.

tracing. In PE, the collection of data for the
Visualization Tool (VT). The program is traced by
collecting information about the execution of the
program in trace records. These records are then
accumulated into a trace file which a user visualizes
with VT.

tracepoint. Tracepoints are places in the program
that, when reached during execution, cause the
debugger to print information about the state of the
program.

trace record. In PE, a collection of information about a
specific event that occurred during the execution of your
program. For example, a trace record is created for
each send and receive operation that occurs in your
program (this is optional and may not be appropriate).
These records are then accumulated into a trace file
which allows the Visualization Tool to visually display
the communications patterns from the program.

U
unrolling loops. See loop unrolling.

US. See user space.

user. (1) A person who requires the services of a
computing system. (2) Any person or any thing that may
issue or receive commands and message to or from the
information processing system.

user space (US). A version of the message passing
library that is optimized for direct access to the SP High
Performance Switch, that maximizes the performance
capabilities of the SP hardware.

utility program. A computer program in general
support of computer processes; for example, a
diagnostic program, a trace program, a sort program.

utility routine. A routine in general support of the
processes of a computer; for example, an input routine.

V
variable. (1) In programming languages, a named
object that may take different values, one at a time. The
values of a variable are usually restricted to one data
type. (2) A quantity that can assume any of a given set
of values. (3) A name used to represent a data item
whose value can be changed while the program is
running. (4) A name used to represent data whose value
can be changed, while the program is running, by
referring to the name of the variable.

IBM Confidential, Limited Rights Data

Glossary of Terms and Abbreviations 171

view. (1) In an information resource directory, the
combination of a variation name and revision number
that is used as a component of an access name or of a
descriptive name.

Visualization Tool. The PE Visualization Tool. This
tool uses information that is captured as your parallel
program executes, and presents a graphical display of
the program execution. For more information, see IBM
Parallel Environment for AIX: Operation and Use,
Volume 2, Tools Reference

VT. See Visualization Tool.

X
X Window System. The UNIX industry’s graphics
windowing standard that provides simultaneous views of
several executing programs or processes on high
resolution graphics displays.

xpdbx. This is the former name of the PE graphical
interface debugging facility, which is now called pedb .

Xprofiler. An AIX tool that is used to analyze the
performance of both serial and parallel applications, via
a graphical user interface. Xprofiler provides quick
access to the profiled data, so that the functions that
are the most CPU-intensive can be easily identified.

IBM Confidential, Limited Rights Data

172 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Bibliography

This bibliography helps you find product documentation related to the RS/6000 SP
hardware and software products.

You can find most of the IBM product information for RS/6000 SP products on the
World Wide Web. Formats for both viewing and downloading are available.

PE documentation is shipped with the PE licensed program in a variety of formats
and can be installed on your system. See “Accessing PE Documentation Online”
and “Parallel Environment (PE) Publications” on page 174 for more information.

This bibliography also contains a list of non-IBM publications that discuss parallel
computing and other topics related to the RS/6000 SP.

Information Formats
Documentation supporting RS/6000 SP software licensed programs is no longer
available from IBM in hardcopy format. However, you can view, search, and print
documentation in the following ways:

v On the World Wide Web

v Online (on the product media and via the SP Resource Center)

Finding Documentation on the World Wide Web
Most of the RS/6000 SP hardware and software books are available from the IBM
RS/6000 Web site at:

http://www.rs6000.ibm.com

The serial and parallel programs that you find in the IBM Parallel Environment for
AIX: Hitchhiker’s Guide are also available from the IBM RS/6000 Web site, in the
same location as the PE online library.

You can view a book, download a Portable Document Format (PDF) version of it, or
download the sample programs from the IBM Parallel Environment for AIX:
Hitchhiker’s Guide.

At the time this manual was published, the Web address of the “RS/6000 SP
Product Documentation Library” page was:

http://www.rs6000.ibm.com/resource/aix_resource/sp_books

However, the structure of the RS/6000 Web site may change over time.

Accessing PE Documentation Online
On the same medium as the PE product code, IBM ships PE man pages, HTML
files, and PDF files. To use the PE online documentation, you must first install these
filesets:
v ppe.html
v ppe.man
v ppe.pdf

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 173

To view the PE HTML publications, you need access to an HTML document
browser such as Netscape. The HTML files and an index that links to them are
installed in the /usr/lpp/ppe.html directory. Once the HTML files are installed, you
can also view them from the RS/6000 SP Resource Center.

If you have installed the SP Resource Center on your SP system, you can access it
by entering this command:
/usr/lpp/ssp/bin/resource_center

If you have the SP Resource Center on CD-ROM, see the readme.txt file for
information about how to run it.

To view the PE PDF publications, you need access to the Adobe Acrobat Reader
3.0 or later. The Acrobat Reader is shipped with the AIX Version 4.3 Bonus Pack
and is also freely available for downloading from the Adobe web site at:

http://www.adobe.com

To successfully print a large PDF file (approximately 300 or more pages) from the
Adobe Acrobat reader, you may need to select the “Download Fonts Once” button
on the Print window.

RS/6000 SP Publications

SP Hardware and Planning Publications
The following publications are related to this book only if you run parallel programs
on the RS/6000 SP. These books are not related if you use an IBM RS/6000
network cluster.

v IBM RS/6000 SP: Planning, Volume 1, Hardware and Physical Environment,
GA22-7280

v IBM RS/6000 SP: Planning, Volume 2, Control Workstation and Software
Environment, GA22-7281

SP Software Publications

LoadLeveler Publications
v LoadLeveler Diagnosis and Messages Guide, GA22-7277

v Using and Administering LoadLeveler, SA22-7311

Parallel Environment (PE) Publications
v IBM Parallel Environment for AIX: DPCL Class Reference, SA22-7421

v IBM Parallel Environment for AIX: DPCL Programming Guide, SA22-7420

v IBM Parallel Environment for AIX: Hitchhiker’s Guide, SA22-7424

v IBM Parallel Environment for AIX: Installation, GA22-7418

v IBM Parallel Environment for AIX: Messages, GA22-7419

v IBM Parallel Environment for AIX: MPI Programming Guide, SA22-7422

v IBM Parallel Environment for AIX: MPI Subroutine Reference, SA22-7423

v IBM Parallel Environment for AIX: MPL Programming and Subroutine Reference,
GC23-3893

v IBM Parallel Environment for AIX: Operation and Use, Volume 1, SA22-7425

v IBM Parallel Environment for AIX: Operation and Use, Volume 2, SA22-7426

IBM Confidential, Limited Rights Data

174 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

PSSP Publications
The following publications are related to this book only if you run parallel programs
on the RS/6000 SP. These books are not related if you use an IBM RS/6000
network cluster.

v IBM Parallel System Support Programs for AIX: Administration Guide, SA22-7348

v IBM Parallel System Support Programs for AIX: Command and Technical
Reference, GA22-7351

v IBM Parallel System Support Programs for AIX: Diagnosis Guide, GA22-7350

v IBM Parallel System Support Programs for AIX: Installation and Migration Guide,
GA22-7347

v IBM Parallel System Support Programs for AIX: Messages Reference,
GA22-7352

AIX and Related Product Publications
For the latest information on AIX and related products, including RS/6000 hardware
products, see AIX and Related Products Documentation Overview, SC23-2456. You
can order a printed copy of the book from IBM. You can also view it online from the
“AIX Online Publications and Books” page of the RS/6000 Web site at:

http://www.rs6000.ibm.com/resource/aix_resource/Pubs

DCE Publications
You can view a DCE book or download a PDF version of it from the IBM DCE Web
site at:

http://www.ibm.com/software/network/dce/library

Red Books
IBM’s International Technical Support Organization (ITSO) has published a number
of redbooks related to the RS/6000 SP. For a current list, see the ITSO Web site at:

http://www.redbooks.ibm.com

Non-IBM Publications
Here are some non-IBM publications that you may find helpful.

v Almasi, G. and A. Gottlieb. Highly Parallel Computing, Benjamin-Cummings
Publishing Company, Inc., 1989.

v Bergmark, D., and M. Pottle. Optimization and Parallelization of a Commodity
Trade Model for the SP1. Cornell Theory Center, Cornell University, June 1994.

v Foster, I. Designing and Building Parallel Programs, Addison-Wesley, 1995.

v Gropp, William, Ewing Lusk, and Anthony Skjellum. Using MPI, The MIT Press,
1994.

As an alternative, you can use SR28-5757 to order this book through your IBM
representative or IBM branch office serving your locality.

v Koelbel, Charles H., David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr.,
and Mary E. Zosel. The High Performance FORTRAN Handbook, The MIT Press,
1993.

v Message Passing Interface Forum, MPI: A Message-Passing Interface Standard,
Version 1.1, University of Tennessee, Knoxville, Tennessee, June 6, 1995.

IBM Confidential, Limited Rights Data

Bibliography 175

v Message Passing Interface Forum, MPI-2: Extensions to the Message-Passing
Interface, Version 2.0, University of Tennessee, Knoxville, Tennessee, July 18,
1997.

v Pfister, Gregory, F. In Search of Clusters, Prentice Hall, 1998.

v Snir, M., Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack
Dongarra. MPI: The Complete Reference The MIT Press, 1996.

v Spiegel, Murray R. Vector Analysis McGraw-Hill, 1959.

Permission to copy without fee all or part of Message Passing Interface Forum
material is granted, provided the University of Tennessee copyright notice and the
title of the document appear, and notice is given that copying is by permission of
the University of Tennessee. ©1993, 1997 University of Tennessee, Knoxville,
Tennessee.

For more information about the Message Passing Interface Forum and the MPI
standards documents, see:

http://www.mpi-forum.org

IBM Confidential, Limited Rights Data

176 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

Index

T
trademarks 162

IBM Confidential, Limited Rights Data

© Copyright IBM Corp. 2000 177

IBM Confidential, Limited Rights Data

178 IBM PE for AIX V3R1.0: PE Benchmarker User’s Guide

IBMR

Program Number: 5765-D93

IBM Confidential, Limited Rights Data

Printed in the United States of America
on recycled paper containing 10%
recovered post-consumer fiber.

	Contents
	About This Book
	Who Should Use This Book
	How This Book is Organized
	Overview of Contents

	Chapter 1. What is the PE Benchmarker?
	Chapter 2. Using the Performance Collection Tool
	Using the Performance Collection Tool's Graphical User Interface
	Performance Collection Tool (Graphical User Interface) Overview
	Starting the Performance Collection Tool
	Loading and Starting a New Application
	Connecting to a Running Application
	Connecting to One or More Processes of the Loaded Application
	Selecting (At Tool Start-up Time) the Type of Probe Data To BeCollected
	Selecting (After Tool Startup Time) the Type of Probe Data To BeCollected
	Starting and Stopping Application Execution
	Disconnecting From One or More Processes of the Loaded Application
	Viewing Application Source Code
	Setting User Preferences
	Searching for Functions in the Application Source Code
	Examining Output From, and Sending Input To, the Application
	Specifying MPI Trace Data to Be Collected
	Adding User Markers to Processes
	Specifying Profile Data To Be Collected
	Removing Performance Collection Probes From One or MoreProcesses
	Removing User Markers From Processes
	Terminating Connected Processes
	Exiting the Performance Collection Tool

	Using the Performance Collection Tool's Command-Line Interface
	Performance Collection Tool (Command-Line Interface) Overview
	Starting the Performance Collection Tool In Command-Line Mode
	Grouping Tasks of a POE Application
	Loading and Starting a New Application
	Connecting to a Running Application
	Suspending and Resuming Application Execution
	Sending Standard Input Text to the Application
	Displaying the Contents of a Source File
	Selecting Type of Probe Data To Be Collected
	Collecting MPI Trace and Custom User Marker Information
	Setting the Output Location and Other Preferences for the AIXTrace Files Generated
	Adding MPI Trace Probes to Processes
	Removing MPI Trace Probes From Processes
	Adding User Markers to Processes
	Removing User Markers From Processes

	Collecting Hardware and Operating System Profile Information
	Setting the Output Location for the NetCDF Files Generated
	Adding Hardware Profile Probes to Processes
	Removing Hardware Profile Probes From Processes

	Terminating Connected Processes
	Disconnecting From the Application
	Exiting the Performance Collection Tool

	Chapter 3. Using the Profile Visualization Tool
	Using the Profile Visualization Tool's Graphical User Interface
	Profile Visualization Tool (Graphical User Interface) Overview
	Starting the Profile Visualization Tool
	Viewing Source Code Structure
	Viewing Selected Profile Data

	Loading Files for Processing
	Viewing Profile Data
	Viewing Source Code Hierarchy
	Expanding and Collapsing Objects
	Sorting Objects
	Viewing Function Call Count
	Selecting Wall Clock Time
	Selecting Resource Usage Options
	Viewing Hardware Counters

	Viewing Selected Objects
	Viewing Selected Source Code
	Viewing Selected Profile Data
	Viewing Selected Statistics Reports
	Viewing Selected Process IDs
	Expanding and Collapsing a Selected Object

	Finding Data
	Generating Reports of Profile Data
	Saving Summary Data
	Exporting Profile Data
	Specifying User Preferences
	Exiting the Profile Visualization Tool

	Using the Profile Visualization Tool's Command Line Interface
	Profile Visualization Tool (Command Line Interface) Overview
	Starting the Profile Visualization Tool in Command-Line Mode
	Loading Files
	Creating a Summary File
	Generating Reports
	Exporting Files
	Exiting the Profile Visualization Tool

	Chapter 4. Creating, Converting, and Viewing InformationContained In, UTE Interval Files
	Converting AIX Trace Files Into UTE Interval Trace Files
	Generating Statistics Tables From UTE Interval Trace Files
	Converting UTE Interval Files Into SLOG Files Required By ArgonneNational Laboratory's Jumpshot Tool

	Appendix A. Dynamic Probe Class Library (DPCL)Enhancements
	New Functions of Class SourceObj
	bget_function_list
	get_function_list

	Class FunctionId
	Constructors
	get_demangled_name
	get_demangled_name_length
	get_mangled_name
	get_mangled_name_length
	get_module_name
	get_module_name_length
	operator=
	operator==

	Class FunctionList
	Constructors
	get_count
	get_entry
	operator=

	Appendix B. PE Benchmarker Command Reference
	convert
	pct
	Subcommands of the pct Command
	connect Subcommand (of the pct Command)
	destroy Subcommand (of the pct Command)
	disconnect Subcommand (of the pct Command)
	exit Subcommand (of the pct Command)
	file Subcommand (of the pct Command)
	find Subcommand (of the pct Command)
	function Subcommand (of the pct Command)
	group Subcommand (of the pct Command)
	list Subcommand (of the pct Command)
	load Subcommand (of the pct Command)
	point Subcommand (of the pct Command)
	profile add Subcommand (of the pct Command)
	profile remove Subcommand (of the pct Command)
	profile set path Subcommand (of the pct Command)
	profile show Subcommand (of the pct Command)
	resume Subcommand (of the pct Command)
	select Subcommand (of the pct Command)
	set Subcommand
	show Subcommand (of the pct Command)
	start Subcommand (of the pct Command)
	stdin Subcommand (of the pct Command)
	suspend Subcommand (of the pct Command)
	trace add Subcommand (of the pct Command)
	trace remove Subcommand (of the pct Command)
	trace set Subcommand (of the pct Command)
	trace show Subcommand (of the pct Command)
	wait Subcommand (of the pct Command)

	pvt
	Subcommands of the pvt Command
	exit Subcommand (of the pvt Command)
	export Subcommand (of the pvt Command)
	load Subcommand (of the pvt Command)
	report Subcommand (of the pvt Command)
	sum Subcommand (of the pvt Command)

	slogmerge
	utemerge
	utestats

	Appendix C. PE Benchmarker Messages
	Notices
	Trademarks
	Acknowledgements

	Glossary of Terms and Abbreviations
	Bibliography
	Information Formats
	Finding Documentation on the World Wide Web
	Accessing PE Documentation Online
	RS/6000 SP Publications
	SP Hardware and Planning Publications
	SP Software Publications
	LoadLeveler Publications
	Parallel Environment (PE) Publications
	PSSP Publications

	AIX and Related Product Publications
	DCE Publications
	Red Books
	Non-IBM Publications

	Index

